ntel-gpu-tools/tests/gem_stress.c
Chris Wilson 3d66d913d9 gem_stress: trim buffer sizes to fit into 3D pipeline
Remember the 3D pipeline is much more restricted than the BLT engine,
and we were feeding it buffers much larger than either the
render engine or the sampler could manager.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
2011-06-05 22:21:54 +01:00

851 lines
23 KiB
C

/*
* Copyright © 2011 Daniel Vetter
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Daniel Vetter <daniel.vetter@ffwll.ch>
*
* Partially based upon gem_tiled_fence_blits.c
*/
/** @file gem_stress.c
*
* This is a general gem coherency test. It's designed to eventually replicate
* any possible sequence of access patterns. It works by copying a set of tiles
* between two sets of backing buffer objects, randomly permutating the assinged
* position on each copy operations.
*
* The copy operation are done in tiny portions (to reduce any race windows
* for corruptions, hence increasing the chances for observing one) and are
* constantly switched between all means to copy stuff (fenced blitter, unfenced
* render, mmap, pwrite/read).
*
* After every complete move of a set tiling parameters of a buffer are randomly
* changed to simulate the effects of libdrm caching.
*
* Buffers are 1mb big to nicely fit into fences on gen2/3. A few are further
* split up to test relaxed fencing. Using this to push the average working set
* size over the available gtt space forces objects to be mapped as unfenceable
* (and as a side-effect tests gtt map/unmap coherency).
*
* In short: designed for maximum evilness.
*/
#include "gem_stress.h"
#define CMD_POLY_STIPPLE_OFFSET 0x7906
/** TODO:
* - beat on relaxed fencing (i.e. mappable/fenceable tracking in the kernel)
* - render copy (to check fence tracking and cache coherency management by the
* kernel)
* - multi-threading: probably just a wrapper script to launch multiple
* instances + an option to accordingly reduce the working set
* - gen6 inter-ring coherency (needs render copy, first)
* - variable buffer size
* - add an option to fork a second process that randomly sends signals to the
* first one (to check consistency of the kernel recovery paths)
*/
static uint64_t gem_aperture_size(int fd)
{
struct drm_i915_gem_get_aperture aperture;
aperture.aper_size = 256*1024*1024;
(void)drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture);
return aperture.aper_size;
}
drm_intel_bufmgr *bufmgr;
struct intel_batchbuffer *batch;
int drm_fd;
int devid;
int num_fences;
drm_intel_bo *busy_bo;
struct option_struct options;
static struct scratch_buf buffers[2][MAX_BUFS];
/* tile i is at logical position tile_permutation[i] */
static unsigned *tile_permutation;
static unsigned num_buffers = 0;
static unsigned current_set = 0;
static unsigned target_set = 0;
static unsigned num_total_tiles = 0;
#define TILES_PER_BUF (num_total_tiles / num_buffers)
int fence_storm = 0;
static int gpu_busy_load = 10;
static void tile2xy(struct scratch_buf *buf, unsigned tile, unsigned *x, unsigned *y)
{
assert(tile < buf->num_tiles);
*x = (tile*TILE_SIZE) % (buf->stride/sizeof(uint32_t));
*y = ((tile*TILE_SIZE) / (buf->stride/sizeof(uint32_t))) * TILE_SIZE;
}
static void emit_blt(drm_intel_bo *src_bo, uint32_t src_tiling, unsigned src_pitch,
unsigned src_x, unsigned src_y, unsigned w, unsigned h,
drm_intel_bo *dst_bo, uint32_t dst_tiling, unsigned dst_pitch,
unsigned dst_x, unsigned dst_y)
{
uint32_t cmd_bits = 0;
if (IS_965(devid) && src_tiling) {
src_pitch /= 4;
cmd_bits |= XY_SRC_COPY_BLT_SRC_TILED;
}
if (IS_965(devid) && dst_tiling) {
dst_pitch /= 4;
cmd_bits |= XY_SRC_COPY_BLT_DST_TILED;
}
/* copy lower half to upper half */
BEGIN_BATCH(8);
OUT_BATCH(XY_SRC_COPY_BLT_CMD |
XY_SRC_COPY_BLT_WRITE_ALPHA |
XY_SRC_COPY_BLT_WRITE_RGB |
cmd_bits);
OUT_BATCH((3 << 24) | /* 32 bits */
(0xcc << 16) | /* copy ROP */
dst_pitch);
OUT_BATCH(dst_y << 16 | dst_x);
OUT_BATCH((dst_y+h) << 16 | (dst_x+w));
OUT_RELOC_FENCED(dst_bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, 0);
OUT_BATCH(src_y << 16 | src_x);
OUT_BATCH(src_pitch);
OUT_RELOC_FENCED(src_bo, I915_GEM_DOMAIN_RENDER, 0, 0);
ADVANCE_BATCH();
}
/* All this gem trashing wastes too much cpu time, so give the gpu something to
* do to increase changes for races. */
void keep_gpu_busy(void)
{
int tmp;
tmp = 1 << gpu_busy_load;
assert(tmp <= 1024);
emit_blt(busy_bo, 0, 4096, 0, 0, tmp, 128,
busy_bo, 0, 4096, 0, 128);
}
static void set_to_cpu_domain(struct scratch_buf *buf, int write)
{
struct drm_i915_gem_set_domain set_domain;
int ret;
set_domain.handle = buf->bo->handle;
set_domain.read_domains = I915_GEM_DOMAIN_CPU;
if (write)
set_domain.write_domain = I915_GEM_DOMAIN_CPU;
else
set_domain.write_domain = 0;
ret = drmIoctl(drm_fd,
DRM_IOCTL_I915_GEM_SET_DOMAIN,
&set_domain);
assert(ret == 0);
}
static unsigned int copyfunc_seq = 0;
static void (*copyfunc)(struct scratch_buf *src, unsigned src_x, unsigned src_y,
struct scratch_buf *dst, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no);
/* stride, x, y in units of uint32_t! */
static void cpucpy2d(uint32_t *src, unsigned src_stride, unsigned src_x, unsigned src_y,
uint32_t *dst, unsigned dst_stride, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no)
{
int i, j;
int failed = 0;
for (i = 0; i < TILE_SIZE; i++) {
for (j = 0; j < TILE_SIZE; j++) {
unsigned dst_ofs = dst_x + j + dst_stride * (dst_y + i);
unsigned src_ofs = src_x + j + src_stride * (src_y + i);
unsigned expect = logical_tile_no*TILE_SIZE*TILE_SIZE
+ i*TILE_SIZE + j;
uint32_t tmp = src[src_ofs];
if (tmp != expect) {
printf("mismatch at tile %i pos %i, read %i, expected %i, diff %i\n",
logical_tile_no, i*TILE_SIZE + j, tmp, expect, (int) tmp - expect);
if (options.trace_tile >= 0)
exit(1);
failed = 1;
}
dst[dst_ofs] = tmp;
}
}
if (failed)
exit(1);
}
static void cpu_copyfunc(struct scratch_buf *src, unsigned src_x, unsigned src_y,
struct scratch_buf *dst, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no)
{
if (options.use_cpu_maps) {
set_to_cpu_domain(src, 0);
set_to_cpu_domain(dst, 1);
}
cpucpy2d(src->data, src->stride/sizeof(uint32_t), src_x, src_y,
dst->data, dst->stride/sizeof(uint32_t), dst_x, dst_y,
logical_tile_no);
}
static void prw_copyfunc(struct scratch_buf *src, unsigned src_x, unsigned src_y,
struct scratch_buf *dst, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no)
{
uint32_t tmp_tile[TILE_SIZE*TILE_SIZE];
int i;
if (src->tiling == I915_TILING_NONE) {
for (i = 0; i < TILE_SIZE; i++) {
unsigned ofs = src_x*sizeof(uint32_t) + src->stride*(src_y + i);
drm_intel_bo_get_subdata(src->bo, ofs,
TILE_SIZE*sizeof(uint32_t),
tmp_tile + TILE_SIZE*i);
}
} else {
if (options.use_cpu_maps)
set_to_cpu_domain(src, 0);
cpucpy2d(src->data, src->stride/sizeof(uint32_t), src_x, src_y,
tmp_tile, TILE_SIZE, 0, 0, logical_tile_no);
}
if (dst->tiling == I915_TILING_NONE) {
for (i = 0; i < TILE_SIZE; i++) {
unsigned ofs = dst_x*sizeof(uint32_t) + dst->stride*(dst_y + i);
drm_intel_bo_subdata(dst->bo, ofs,
TILE_SIZE*sizeof(uint32_t),
tmp_tile + TILE_SIZE*i);
}
} else {
if (options.use_cpu_maps)
set_to_cpu_domain(dst, 1);
cpucpy2d(tmp_tile, TILE_SIZE, 0, 0,
dst->data, dst->stride/sizeof(uint32_t), dst_x, dst_y,
logical_tile_no);
}
}
static void blitter_copyfunc(struct scratch_buf *src, unsigned src_x, unsigned src_y,
struct scratch_buf *dst, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no)
{
static unsigned keep_gpu_busy_counter = 0;
/* check both edges of the fence usage */
if (keep_gpu_busy_counter & 1 && !fence_storm)
keep_gpu_busy();
emit_blt(src->bo, src->tiling, src->stride, src_x, src_y,
TILE_SIZE, TILE_SIZE,
dst->bo, dst->tiling, dst->stride, dst_x, dst_y);
if (!(keep_gpu_busy_counter & 1) && !fence_storm)
keep_gpu_busy();
keep_gpu_busy_counter++;
if (src->tiling)
fence_storm--;
if (dst->tiling)
fence_storm--;
if (fence_storm <= 1) {
fence_storm = 0;
intel_batchbuffer_flush(batch);
}
}
static void render_copyfunc(struct scratch_buf *src, unsigned src_x, unsigned src_y,
struct scratch_buf *dst, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no)
{
if (IS_GEN2(devid))
gen2_render_copyfunc(src, src_x, src_y,
dst, dst_x, dst_y,
logical_tile_no);
else if (IS_GEN3(devid))
gen3_render_copyfunc(src, src_x, src_y,
dst, dst_x, dst_y,
logical_tile_no);
else if (IS_GEN6(devid))
gen6_render_copyfunc(src, src_x, src_y,
dst, dst_x, dst_y,
logical_tile_no);
else
blitter_copyfunc(src, src_x, src_y,
dst, dst_x, dst_y,
logical_tile_no);
}
static void next_copyfunc(int tile)
{
if (fence_storm) {
if (tile == options.trace_tile)
printf(" using fence storm\n");
return;
}
if (copyfunc_seq % 61 == 0) {
if (tile == options.trace_tile)
printf(" using fence storm\n");
fence_storm = num_fences;
copyfunc = blitter_copyfunc;
} else if (copyfunc_seq % 17 == 0) {
if (tile == options.trace_tile)
printf(" using cpu\n");
copyfunc = cpu_copyfunc;
} else if (copyfunc_seq % 19 == 0) {
if (tile == options.trace_tile)
printf(" using prw\n");
copyfunc = prw_copyfunc;
} else if (copyfunc_seq % 3 == 0 && options.use_render) {
if (tile == options.trace_tile)
printf(" using render\n");
copyfunc = render_copyfunc;
} else if (options.use_blt){
if (tile == options.trace_tile)
printf(" using blitter\n");
copyfunc = blitter_copyfunc;
} else if (options.use_render){
if (tile == options.trace_tile)
printf(" using render\n");
copyfunc = render_copyfunc;
} else {
copyfunc = cpu_copyfunc;
}
copyfunc_seq++;
}
static void fan_out(void)
{
uint32_t tmp_tile[TILE_SIZE*TILE_SIZE];
uint32_t seq = 0;
int i, k;
unsigned tile, buf_idx, x, y;
for (i = 0; i < num_total_tiles; i++) {
tile = i;
buf_idx = tile / TILES_PER_BUF;
tile %= TILES_PER_BUF;
tile2xy(&buffers[current_set][buf_idx], tile, &x, &y);
for (k = 0; k < TILE_SIZE*TILE_SIZE; k++)
tmp_tile[k] = seq++;
if (options.use_cpu_maps)
set_to_cpu_domain(&buffers[current_set][buf_idx], 1);
cpucpy2d(tmp_tile, TILE_SIZE, 0, 0,
buffers[current_set][buf_idx].data,
buffers[current_set][buf_idx].stride / sizeof(uint32_t),
x, y, i);
}
for (i = 0; i < num_total_tiles; i++)
tile_permutation[i] = i;
}
static void fan_in_and_check(void)
{
uint32_t tmp_tile[TILE_SIZE*TILE_SIZE];
unsigned tile, buf_idx, x, y;
int i;
for (i = 0; i < num_total_tiles; i++) {
tile = tile_permutation[i];
buf_idx = tile / TILES_PER_BUF;
tile %= TILES_PER_BUF;
tile2xy(&buffers[current_set][buf_idx], tile, &x, &y);
if (options.use_cpu_maps)
set_to_cpu_domain(&buffers[current_set][buf_idx], 0);
cpucpy2d(buffers[current_set][buf_idx].data,
buffers[current_set][buf_idx].stride / sizeof(uint32_t),
x, y,
tmp_tile, TILE_SIZE, 0, 0,
i);
}
}
static void init_buffer(struct scratch_buf *buf, unsigned size)
{
buf->bo = drm_intel_bo_alloc(bufmgr, "tiled bo", size, 4096);
assert(buf->bo);
buf->tiling = I915_TILING_NONE;
buf->stride = 8192;
if (options.no_hw)
buf->data = malloc(size);
else {
if (options.use_cpu_maps)
drm_intel_bo_map(buf->bo, 1);
else
drm_intel_gem_bo_map_gtt(buf->bo);
buf->data = buf->bo->virtual;
}
buf->num_tiles = size / TILE_BYTES;
}
static void permute_array(void *array, unsigned size,
void (*exchange_func)(void *array, unsigned i, unsigned j))
{
int i;
for (i = size - 1; i > 1; i--) {
/* yes, not perfectly uniform, who cares */
long l = random() % (i +1);
if (i != l)
exchange_func(array, i, l);
}
}
static void exchange_buf(void *array, unsigned i, unsigned j)
{
struct scratch_buf *buf_arr, tmp;
buf_arr = array;
memcpy(&tmp, &buf_arr[i], sizeof(struct scratch_buf));
memcpy(&buf_arr[i], &buf_arr[j], sizeof(struct scratch_buf));
memcpy(&buf_arr[j], &tmp, sizeof(struct scratch_buf));
}
/* libdrm is too clever and prevents us from changing tiling of buffers already
* used in relocations. */
static void set_tiling(drm_intel_bo *bo, unsigned *tiling, unsigned stride)
{
struct drm_i915_gem_set_tiling set_tiling;
int ret;
memset(&set_tiling, 0, sizeof(set_tiling));
do {
/* set_tiling is slightly broken and overwrites the
* input on the error path, so we have to open code
* drmIoctl.
*/
set_tiling.handle = bo->handle;
set_tiling.tiling_mode = *tiling;
set_tiling.stride = tiling ? stride : 0;
ret = ioctl(drm_fd,
DRM_IOCTL_I915_GEM_SET_TILING,
&set_tiling);
} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
assert(ret != -1);
*tiling = set_tiling.tiling_mode;
}
static void init_set(unsigned set)
{
long int r;
int i;
permute_array(buffers[set], num_buffers, exchange_buf);
if (current_set == 1 && options.gpu_busy_load == 0) {
gpu_busy_load++;
if (gpu_busy_load > 10)
gpu_busy_load = 6;
}
for (i = 0; i < num_buffers; i++) {
r = random();
if ((r & 3) != 0)
continue;
r >>= 2;
if ((r & 3) != 0)
buffers[set][i].tiling = I915_TILING_X;
else
buffers[set][i].tiling = I915_TILING_NONE;
r >>= 2;
if (options.forced_tiling >= 0)
buffers[set][i].tiling = options.forced_tiling;
if (buffers[set][i].tiling == I915_TILING_NONE) {
/* min 64 byte stride */
r %= 8;
buffers[set][i].stride = 64 * (1 << r);
} else if (IS_GEN2(devid)) {
/* min 128 byte stride */
r %= 7;
buffers[set][i].stride = 128 * (1 << r);
} else {
/* min 512 byte stride */
r %= 5;
buffers[set][i].stride = 512 * (1 << r);
}
if (options.scratch_buf_size / buffers[set][i].stride > options.max_dimension)
buffers[set][i].stride = options.scratch_buf_size / options.max_dimension;
assert(buffers[set][i].stride <= 8192);
assert(buf_width(&buffers[set][i]) <= options.max_dimension);
assert(buf_height(&buffers[set][i]) <= options.max_dimension);
set_tiling(buffers[set][i].bo,
&buffers[set][i].tiling,
buffers[set][i].stride);
if (i == options.trace_tile/TILES_PER_BUF)
printf("changing buffer %i containing tile %i: tiling %i, stride %i\n", i,
options.trace_tile,
buffers[set][i].tiling, buffers[set][i].stride);
}
}
static void exchange_uint(void *array, unsigned i, unsigned j)
{
unsigned *i_arr = array;
unsigned i_tmp;
i_tmp = i_arr[i];
i_arr[i] = i_arr[j];
i_arr[j] = i_tmp;
}
static void copy_tiles(unsigned *permutation)
{
unsigned src_tile, src_buf_idx, src_x, src_y;
unsigned dst_tile, dst_buf_idx, dst_x, dst_y;
struct scratch_buf *src_buf, *dst_buf;
int i, idx;
for (i = 0; i < num_total_tiles; i++) {
/* tile_permutation is independent of current_permutation, so
* abuse it to randomize the order of the src bos */
idx = tile_permutation[i];
src_buf_idx = idx / TILES_PER_BUF;
src_tile = idx % TILES_PER_BUF;
src_buf = &buffers[current_set][src_buf_idx];
tile2xy(src_buf, src_tile, &src_x, &src_y);
dst_buf_idx = permutation[idx] / TILES_PER_BUF;
dst_tile = permutation[idx] % TILES_PER_BUF;
dst_buf = &buffers[target_set][dst_buf_idx];
tile2xy(dst_buf, dst_tile, &dst_x, &dst_y);
if (options.trace_tile == i)
printf("copying tile %i from %i (%i, %i) to %i (%i, %i)", i,
tile_permutation[i], src_buf_idx, src_tile,
permutation[idx], dst_buf_idx, dst_tile);
if (options.no_hw) {
cpucpy2d(src_buf->data,
src_buf->stride / sizeof(uint32_t),
src_x, src_y,
dst_buf->data,
dst_buf->stride / sizeof(uint32_t),
dst_x, dst_y,
i);
} else {
next_copyfunc(i);
copyfunc(src_buf, src_x, src_y, dst_buf, dst_x, dst_y,
i);
}
}
intel_batchbuffer_flush(batch);
}
static int get_num_fences(void)
{
drm_i915_getparam_t gp;
int ret, val;
gp.param = I915_PARAM_NUM_FENCES_AVAIL;
gp.value = &val;
ret = drmIoctl(drm_fd, DRM_IOCTL_I915_GETPARAM, &gp);
assert (ret == 0);
printf ("total %d fences\n", val);
assert(val > 4);
return val - 2;
}
static void parse_options(int argc, char **argv)
{
int c, tmp;
int option_index = 0;
static struct option long_options[] = {
{"no-hw", 0, 0, 'd'},
{"buf-size", 1, 0, 's'},
{"gpu-busy-load", 1, 0, 'g'},
{"buffer-count", 1, 0, 'c'},
{"trace-tile", 1, 0, 't'},
{"disable-blt", 0, 0, 'b'},
{"disable-render", 0, 0, 'r'},
{"untiled", 0, 0, 'u'},
{"x-tiled", 0, 0, 'x'},
{"use-cpu-maps", 0, 0, 'm'}
};
options.scratch_buf_size = 256*4096;
options.no_hw = 0;
options.gpu_busy_load = 0;
options.num_buffers = 0;
options.trace_tile = -1;
options.use_render = 1;
options.use_blt = 1;
options.forced_tiling = -1;
options.use_cpu_maps = 0;
while((c = getopt_long(argc, argv, "ds:g:c:t:rbuxm",
long_options, &option_index)) != -1) {
switch(c) {
case 'd':
options.no_hw = 1;
printf("no-hw debug mode\n");
break;
case 's':
tmp = atoi(optarg);
if (tmp < TILE_SIZE*8192)
printf("scratch buffer size needs to be at least %i\n",
TILE_SIZE*8192);
else if (tmp & (tmp - 1)) {
printf("scratch buffer size needs to be a power-of-two\n");
} else {
printf("fixed scratch buffer size to %u\n", tmp);
options.scratch_buf_size = tmp;
}
break;
case 'g':
tmp = atoi(optarg);
if (tmp < 0 || tmp > 10)
printf("gpu busy load needs to be bigger than 0 and smaller than 10\n");
else {
printf("gpu busy load factor set to %i\n", tmp);
gpu_busy_load = options.gpu_busy_load = tmp;
}
break;
case 'c':
options.num_buffers = atoi(optarg);
printf("buffer count set to %i\n", options.num_buffers);
break;
case 't':
options.trace_tile = atoi(optarg);
printf("tracing tile %i\n", options.trace_tile);
break;
case 'r':
options.use_render = 0;
printf("disabling render copy\n");
break;
case 'b':
options.use_blt = 0;
printf("disabling blt copy\n");
break;
case 'u':
options.forced_tiling = I915_TILING_NONE;
printf("disabling tiling\n");
break;
case 'x':
if (options.use_cpu_maps) {
printf("tiling not possible with cpu maps\n");
} else {
options.forced_tiling = I915_TILING_X;
printf("using only X-tiling\n");
}
break;
case 'm':
options.use_cpu_maps = 1;
options.forced_tiling = I915_TILING_NONE;
printf("disabling tiling\n");
break;
default:
printf("unkown command options\n");
break;
}
}
if (optind < argc)
printf("unkown command options\n");
options.max_dimension = 32767;
if (options.use_render) {
if (IS_GEN2(devid) || IS_GEN3(devid))
options.max_dimension = 2048;
else
options.max_dimension = 8192;
}
printf("Limiting buffer to %dx%d\n",
options.max_dimension, options.max_dimension);
}
static void init(void)
{
int i;
unsigned tmp;
if (options.num_buffers == 0) {
tmp = gem_aperture_size(drm_fd);
tmp = tmp > 256*(1024*1024) ? 256*(1024*1024) : tmp;
num_buffers = 2 * tmp / options.scratch_buf_size / 3;
num_buffers /= 2;
printf("using %u buffers\n", num_buffers);
} else
num_buffers = options.num_buffers;
bufmgr = drm_intel_bufmgr_gem_init(drm_fd, 4096);
drm_intel_bufmgr_gem_enable_reuse(bufmgr);
drm_intel_bufmgr_gem_enable_fenced_relocs(bufmgr);
num_fences = get_num_fences();
batch = intel_batchbuffer_alloc(bufmgr, devid);
busy_bo = drm_intel_bo_alloc(bufmgr, "tiled bo", BUSY_BUF_SIZE, 4096);
if (options.forced_tiling >= 0) {
tmp = options.forced_tiling;
set_tiling(busy_bo, &tmp, 4096);
assert(tmp == options.forced_tiling);
}
for (i = 0; i < num_buffers; i++) {
init_buffer(&buffers[0][i], options.scratch_buf_size);
init_buffer(&buffers[1][i], options.scratch_buf_size);
num_total_tiles += buffers[0][i].num_tiles;
}
current_set = 0;
/* just in case it helps reproducability */
srandom(0xdeadbeef);
}
static void check_render_copyfunc(void)
{
struct scratch_buf src, dst;
uint32_t *ptr;
int i, j, pass;
init_buffer(&src, options.scratch_buf_size);
init_buffer(&dst, options.scratch_buf_size);
for (pass = 0; pass < 16; pass++) {
int sx = random() % (buf_width(&src)-TILE_SIZE);
int sy = random() % (buf_height(&src)-TILE_SIZE);
int dx = random() % (buf_width(&dst)-TILE_SIZE);
int dy = random() % (buf_height(&dst)-TILE_SIZE);
if (options.use_cpu_maps)
set_to_cpu_domain(&src, 1);
memset(src.data, 0xff, options.scratch_buf_size);
for (j = 0; j < TILE_SIZE; j++) {
ptr = (uint32_t*)((char *)src.data + sx*4 + (sy+j) * src.stride);
for (i = 0; i < TILE_SIZE; i++)
ptr[i] = j * TILE_SIZE + i;
}
render_copyfunc(&src, sx, sy, &dst, dx, dy, 0);
if (options.use_cpu_maps)
set_to_cpu_domain(&dst, 0);
for (j = 0; j < TILE_SIZE; j++) {
ptr = (uint32_t*)((char *)dst.data + dx*4 + (dy+j) * dst.stride);
for (i = 0; i < TILE_SIZE; i++)
if (ptr[i] != j * TILE_SIZE + i) {
printf("render copyfunc mismatch at (%d, %d): found %d, expected %d\n",
i, j, ptr[i], j*TILE_SIZE + i);
}
}
}
}
int main(int argc, char **argv)
{
int i, j;
unsigned *current_permutation, *tmp_permutation;
drm_fd = drm_open_any();
devid = intel_get_drm_devid(drm_fd);
parse_options(argc, argv);
init();
check_render_copyfunc();
tile_permutation = malloc(num_total_tiles*sizeof(uint32_t));
current_permutation = malloc(num_total_tiles*sizeof(uint32_t));
tmp_permutation = malloc(num_total_tiles*sizeof(uint32_t));
assert(tile_permutation);
assert(current_permutation);
assert(tmp_permutation);
fan_out();
for (i = 0; i < 512; i++) {
printf("round %i\n", i);
if (i % 64 == 63) {
fan_in_and_check();
printf("everything correct after %i rounds\n", i + 1);
}
target_set = (current_set + 1) & 1;
init_set(target_set);
for (j = 0; j < num_total_tiles; j++)
current_permutation[j] = j;
permute_array(current_permutation, num_total_tiles, exchange_uint);
copy_tiles(current_permutation);
memcpy(tmp_permutation, tile_permutation, sizeof(unsigned)*num_total_tiles);
/* accumulate the permutations */
for (j = 0; j < num_total_tiles; j++)
tile_permutation[j] = current_permutation[tmp_permutation[j]];
current_set = target_set;
}
fan_in_and_check();
intel_batchbuffer_free(batch);
drm_intel_bufmgr_destroy(bufmgr);
close(drm_fd);
return 0;
}