ntel-gpu-tools/tests/gem_stress.c
Daniel Vetter 294c78f4ab gem_stress: variable gpu busy load
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2011-03-27 15:25:12 +02:00

696 lines
18 KiB
C

/*
* Copyright © 2011 Daniel Vetter
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Daniel Vetter <daniel.vetter@ffwll.ch>
*
* Partially based upon gem_tiled_fence_blits.c
*/
/** @file gem_stress.c
*
* This is a general gem coherency test. It's designed to eventually replicate
* any possible sequence of access patterns. It works by copying a set of tiles
* between two sets of backing buffer objects, randomly permutating the assinged
* position on each copy operations.
*
* The copy operation are done in tiny portions (to reduce any race windows
* for corruptions, hence increasing the chances for observing one) and are
* constantly switched between all means to copy stuff (fenced blitter, unfenced
* render, mmap, pwrite/read).
*
* After every complete move of a set tiling parameters of a buffer are randomly
* changed to simulate the effects of libdrm caching.
*
* Buffers are 1mb big to nicely fit into fences on gen2/3. A few are further
* split up to test relaxed fencing. Using this to push the average working set
* size over the available gtt space forces objects to be mapped as unfenceable
* (and as a side-effect tests gtt map/unmap coherency).
*
* In short: designed for maximum evilness.
*/
#include <stdlib.h>
#include <sys/ioctl.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <fcntl.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <getopt.h>
#include "drm.h"
#include "i915_drm.h"
#include "drmtest.h"
#include "intel_bufmgr.h"
#include "intel_batchbuffer.h"
#include "intel_gpu_tools.h"
#define CMD_POLY_STIPPLE_OFFSET 0x7906
/** TODO:
* - beat on relaxed fencing (i.e. mappable/fenceable tracking in the kernel)
* - render copy (to check fence tracking and cache coherency management by the
* kernel)
* - multi-threading: probably just a wrapper script to launch multiple
* instances + an option to accordingly reduce the working set
* - gen6 inter-ring coherency (needs render copy, first)
* - variable buffer size
* - add an option to fork a second process that randomly sends signals to the
* first one (to check consistency of the kernel recovery paths)
*/
static uint64_t gem_aperture_size(int fd)
{
struct drm_i915_gem_get_aperture aperture;
aperture.aper_size = 256*1024*1024;
(void)drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture);
return aperture.aper_size;
}
struct scratch_buf {
drm_intel_bo *bo;
uint32_t stride;
uint32_t tiling;
uint32_t *data;
unsigned num_tiles;
};
static drm_intel_bufmgr *bufmgr;
struct intel_batchbuffer *batch;
static int drm_fd;
static int devid;
static int num_fences;
drm_intel_bo *busy_bo;
static struct {
unsigned scratch_buf_size;
int no_hw;
int gpu_busy_load;
} options;
#define MAX_BUFS 4096
#define SCRATCH_BUF_SIZE 1024*1024
#define BUSY_BUF_SIZE (256*4096)
#define TILE_SIZE 16
#define TILE_BYTES (TILE_SIZE*TILE_SIZE*sizeof(uint32_t))
static struct scratch_buf buffers[2][MAX_BUFS];
/* tile i is at logical position tile_permutation[i] */
static unsigned *tile_permutation;
static unsigned num_buffers = 0;
static unsigned current_set = 0;
static unsigned target_set = 0;
static unsigned num_total_tiles = 0;
#define TILES_PER_BUF (num_total_tiles / num_buffers)
static int fence_storm = 0;
static int gpu_busy_load = 10;
static void tile2xy(struct scratch_buf *buf, unsigned tile, unsigned *x, unsigned *y)
{
assert(tile < buf->num_tiles);
*x = (tile*TILE_SIZE) % (buf->stride/sizeof(uint32_t));
*y = ((tile*TILE_SIZE) / (buf->stride/sizeof(uint32_t))) * TILE_SIZE;
}
/* All this gem trashing wastes too much cpu time, so give the gpu something to
* do to increase changes for races. */
static void keep_gpu_busy(void)
{
uint32_t src_pitch, dst_pitch, cmd_bits;
int tmp;
src_pitch = 4096;
dst_pitch = 4096;
cmd_bits = 0;
#if 0 /* busy_buf is untiled */
if (IS_965(devid)) {
src_pitch /= 4;
cmd_bits |= XY_SRC_COPY_BLT_SRC_TILED;
}
if (IS_965(devid)) {
dst_pitch /= 4;
cmd_bits |= XY_SRC_COPY_BLT_DST_TILED;
}
#endif
tmp = 1 << gpu_busy_load;
assert(tmp <= 1024);
/* copy lower half to upper half */
BEGIN_BATCH(8);
OUT_BATCH(XY_SRC_COPY_BLT_CMD |
XY_SRC_COPY_BLT_WRITE_ALPHA |
XY_SRC_COPY_BLT_WRITE_RGB |
cmd_bits);
OUT_BATCH((3 << 24) | /* 32 bits */
(0xcc << 16) | /* copy ROP */
dst_pitch);
OUT_BATCH(128 << 16 | 0);
OUT_BATCH(256 << 16 | tmp);
OUT_RELOC(busy_bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, 0);
OUT_BATCH(0 << 16 | 0);
OUT_BATCH(src_pitch);
OUT_RELOC(busy_bo, I915_GEM_DOMAIN_RENDER, 0, 0);
ADVANCE_BATCH();
}
static unsigned int copyfunc_seq = 0;
static void (*copyfunc)(struct scratch_buf *src, unsigned src_x, unsigned src_y,
struct scratch_buf *dst, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no);
/* stride, x, y in units of uint32_t! */
static void cpucpy2d(uint32_t *src, unsigned src_stride, unsigned src_x, unsigned src_y,
uint32_t *dst, unsigned dst_stride, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no)
{
int i, j;
int failed = 0;
for (i = 0; i < TILE_SIZE; i++) {
for (j = 0; j < TILE_SIZE; j++) {
unsigned dst_ofs = dst_x + j + dst_stride * (dst_y + i);
unsigned src_ofs = src_x + j + src_stride * (src_y + i);
unsigned expect = logical_tile_no*TILE_SIZE*TILE_SIZE
+ i*TILE_SIZE + j;
uint32_t tmp = src[src_ofs];
if (tmp != expect) {
printf("mismatch at tile %i pos %i, read %u, expected %u\n",
logical_tile_no, i*TILE_SIZE + j, tmp, expect);
failed = 1;
}
dst[dst_ofs] = tmp;
}
}
if (failed)
exit(1);
}
static void next_copyfunc(void);
static void cpu_copyfunc(struct scratch_buf *src, unsigned src_x, unsigned src_y,
struct scratch_buf *dst, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no)
{
cpucpy2d(src->data, src->stride/sizeof(uint32_t), src_x, src_y,
dst->data, dst->stride/sizeof(uint32_t), dst_x, dst_y,
logical_tile_no);
}
static void prw_copyfunc(struct scratch_buf *src, unsigned src_x, unsigned src_y,
struct scratch_buf *dst, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no)
{
uint32_t tmp_tile[TILE_SIZE*TILE_SIZE];
int i;
if (src->tiling == I915_TILING_NONE) {
for (i = 0; i < TILE_SIZE; i++) {
unsigned ofs = src_x*sizeof(uint32_t) + src->stride*(src_y + i);
drm_intel_bo_get_subdata(src->bo, ofs,
TILE_SIZE*sizeof(uint32_t),
tmp_tile + TILE_SIZE*i);
}
} else {
cpucpy2d(src->data, src->stride/sizeof(uint32_t), src_x, src_y,
tmp_tile, TILE_SIZE, 0, 0, logical_tile_no);
}
if (dst->tiling == I915_TILING_NONE) {
for (i = 0; i < TILE_SIZE; i++) {
unsigned ofs = dst_x*sizeof(uint32_t) + dst->stride*(dst_y + i);
drm_intel_bo_subdata(dst->bo, ofs,
TILE_SIZE*sizeof(uint32_t),
tmp_tile + TILE_SIZE*i);
}
} else {
cpucpy2d(tmp_tile, TILE_SIZE, 0, 0,
dst->data, dst->stride/sizeof(uint32_t), dst_x, dst_y,
logical_tile_no);
}
}
static void blitter_copyfunc(struct scratch_buf *src, unsigned src_x, unsigned src_y,
struct scratch_buf *dst, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no)
{
uint32_t src_pitch, dst_pitch, cmd_bits;
src_pitch = src->stride;
dst_pitch = dst->stride;
cmd_bits = 0;
static unsigned keep_gpu_busy_counter = 0;
/* check both edges of the fence usage */
if (keep_gpu_busy_counter & 1 && !fence_storm)
keep_gpu_busy();
if (IS_965(devid) && src->tiling) {
src_pitch /= 4;
cmd_bits |= XY_SRC_COPY_BLT_SRC_TILED;
}
if (IS_965(devid) && dst->tiling) {
dst_pitch /= 4;
cmd_bits |= XY_SRC_COPY_BLT_DST_TILED;
}
BEGIN_BATCH(8);
OUT_BATCH(XY_SRC_COPY_BLT_CMD |
XY_SRC_COPY_BLT_WRITE_ALPHA |
XY_SRC_COPY_BLT_WRITE_RGB |
cmd_bits);
OUT_BATCH((3 << 24) | /* 32 bits */
(0xcc << 16) | /* copy ROP */
dst_pitch);
OUT_BATCH(dst_y << 16 | dst_x);
OUT_BATCH((dst_y+TILE_SIZE) << 16 | (dst_x+TILE_SIZE));
OUT_RELOC(dst->bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, 0);
OUT_BATCH(src_y << 16 | src_x);
OUT_BATCH(src_pitch);
OUT_RELOC(src->bo, I915_GEM_DOMAIN_RENDER, 0, 0);
ADVANCE_BATCH();
if (!(keep_gpu_busy_counter & 1) && !fence_storm)
keep_gpu_busy();
keep_gpu_busy_counter++;
if (src->tiling)
fence_storm--;
if (dst->tiling)
fence_storm--;
if (fence_storm <= 1) {
fence_storm = 0;
intel_batchbuffer_flush(batch);
}
}
static void next_copyfunc(void)
{
if (fence_storm)
return;
if (copyfunc_seq % 61 == 0) {
fence_storm = num_fences;
copyfunc = blitter_copyfunc;
} else if (copyfunc_seq % 17 == 0)
copyfunc = cpu_copyfunc;
else if (copyfunc_seq % 19 == 0)
copyfunc = prw_copyfunc;
else
copyfunc = blitter_copyfunc;
copyfunc_seq++;
}
static void fan_out(void)
{
uint32_t tmp_tile[TILE_SIZE*TILE_SIZE];
uint32_t seq = 0;
int i, k;
unsigned tile, buf_idx, x, y;
for (i = 0; i < num_total_tiles; i++) {
tile = i;
buf_idx = tile / TILES_PER_BUF;
tile %= TILES_PER_BUF;
tile2xy(&buffers[current_set][buf_idx], tile, &x, &y);
for (k = 0; k < TILE_SIZE*TILE_SIZE; k++)
tmp_tile[k] = seq++;
cpucpy2d(tmp_tile, TILE_SIZE, 0, 0,
buffers[current_set][buf_idx].data,
buffers[current_set][buf_idx].stride / sizeof(uint32_t),
x, y, i);
}
for (i = 0; i < num_total_tiles; i++)
tile_permutation[i] = i;
}
static void fan_in_and_check(void)
{
uint32_t tmp_tile[TILE_SIZE*TILE_SIZE];
unsigned tile, buf_idx, x, y;
int i;
for (i = 0; i < num_total_tiles; i++) {
tile = tile_permutation[i];
buf_idx = tile / TILES_PER_BUF;
tile %= TILES_PER_BUF;
tile2xy(&buffers[current_set][buf_idx], tile, &x, &y);
cpucpy2d(buffers[current_set][buf_idx].data,
buffers[current_set][buf_idx].stride / sizeof(uint32_t),
x, y,
tmp_tile, TILE_SIZE, 0, 0,
i);
}
}
static void init_buffer(struct scratch_buf *buf, unsigned size)
{
buf->bo = drm_intel_bo_alloc(bufmgr, "tiled bo", size, 4096);
assert(buf->bo);
buf->tiling = I915_TILING_NONE;
buf->stride = 8192;
if (options.no_hw)
buf->data = malloc(size);
else {
drm_intel_gem_bo_map_gtt(buf->bo);
buf->data = buf->bo->virtual;
}
buf->num_tiles = size / TILE_BYTES;
}
static void permute_array(void *array, unsigned size,
void (*exchange_func)(void *array, unsigned i, unsigned j))
{
int i;
long int l;
for (i = size - 1; i > 1; i--) {
l = random();
l %= i+1; /* yes, no perfectly uniform, who cares */
exchange_func(array, i, l);
}
}
static void exchange_buf(void *array, unsigned i, unsigned j)
{
struct scratch_buf *buf_arr, tmp;
buf_arr = array;
memcpy(&tmp, &buf_arr[i], sizeof(struct scratch_buf));
memcpy(&buf_arr[i], &buf_arr[j], sizeof(struct scratch_buf));
memcpy(&buf_arr[j], &tmp, sizeof(struct scratch_buf));
}
/* libdrm is to clever and prevents us from changin tiling of buffers already
* used in relocations. */
static void set_tiling(drm_intel_bo *bo, unsigned *tiling, unsigned stride)
{
struct drm_i915_gem_set_tiling set_tiling;
int ret;
memset(&set_tiling, 0, sizeof(set_tiling));
do {
/* set_tiling is slightly broken and overwrites the
* input on the error path, so we have to open code
* drmIoctl.
*/
set_tiling.handle = bo->handle;
set_tiling.tiling_mode = *tiling;
set_tiling.stride = stride;
ret = ioctl(drm_fd,
DRM_IOCTL_I915_GEM_SET_TILING,
&set_tiling);
} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
assert(ret != -1);
*tiling = set_tiling.tiling_mode;
}
static void init_set(unsigned set)
{
long int r;
int i;
permute_array(buffers[set], num_buffers, exchange_buf);
if (current_set == 1 && options.gpu_busy_load == 0) {
gpu_busy_load++;
if (gpu_busy_load > 10)
gpu_busy_load = 6;
}
for (i = 0; i < num_buffers; i++) {
r = random();
if ((r & 3) != 0)
continue;
r >>= 2;
if ((r & 3) != 0)
buffers[set][i].tiling = I915_TILING_X;
else
buffers[set][i].tiling = I915_TILING_NONE;
r >>= 2;
if (buffers[set][i].tiling == I915_TILING_NONE) {
/* min 64 byte stride */
r %= 8;
buffers[set][i].stride = 64 * (1 << r);
} else if (IS_GEN2(devid)) {
/* min 128 byte stride */
r %= 7;
buffers[set][i].stride = 128 * (1 << r);
} else {
/* min 512 byte stride */
r %= 5;
buffers[set][i].stride = 512 * (1 << r);
}
assert(buffers[set][i].stride <= 8192);
set_tiling(buffers[set][i].bo,
&buffers[set][i].tiling,
buffers[set][i].stride);
}
}
static void exchange_uint(void *array, unsigned i, unsigned j)
{
unsigned *i_arr = array;
unsigned i_tmp;
i_tmp = i_arr[i];
i_arr[i] = i_arr[j];
i_arr[j] = i_tmp;
}
static void copy_tiles(unsigned *permutation)
{
unsigned src_tile, src_buf_idx, src_x, src_y;
unsigned dst_tile, dst_buf_idx, dst_x, dst_y;
struct scratch_buf *src_buf, *dst_buf;
int i, idx;
for (i = 0; i < num_total_tiles; i++) {
/* tile_permutation is independant of current_permutation, so
* abuse it to randomize the order of the src bos */
idx = tile_permutation[i];
src_buf_idx = idx / TILES_PER_BUF;
src_tile = idx % TILES_PER_BUF;
src_buf = &buffers[current_set][src_buf_idx];
tile2xy(src_buf, src_tile, &src_x, &src_y);
dst_buf_idx = permutation[idx] / TILES_PER_BUF;
dst_tile = permutation[idx] % TILES_PER_BUF;
dst_buf = &buffers[target_set][dst_buf_idx];
tile2xy(dst_buf, dst_tile, &dst_x, &dst_y);
if (options.no_hw) {
cpucpy2d(src_buf->data,
src_buf->stride / sizeof(uint32_t),
src_x, src_y,
dst_buf->data,
dst_buf->stride / sizeof(uint32_t),
dst_x, dst_y,
i);
} else {
next_copyfunc();
copyfunc(src_buf, src_x, src_y, dst_buf, dst_x, dst_y,
i);
}
}
intel_batchbuffer_flush(batch);
}
static int get_num_fences(void)
{
drm_i915_getparam_t gp;
int ret, val;
gp.param = I915_PARAM_NUM_FENCES_AVAIL;
gp.value = &val;
ret = drmIoctl(drm_fd, DRM_IOCTL_I915_GETPARAM, &gp);
assert (ret == 0);
printf ("total %d fences\n", val);
assert(val > 4);
return val - 2;
}
static void parse_options(int argc, char **argv)
{
int c, tmp;
int option_index = 0;
static struct option long_options[] = {
{"no-hw", 0, 0, 'd'},
{"buf-size", 1, 0, 's'},
{"gpu-busy-load", 1, 0, 'g'}
};
options.scratch_buf_size = 256*4096;
options.no_hw = 0;
options.gpu_busy_load = 0;
while((c = getopt_long(argc, argv, "ns:g:",
long_options, &option_index)) != -1) {
switch(c) {
case 'd':
options.no_hw = 1;
printf("no-hw debug mode\n");
break;
case 's':
tmp = atoi(optarg);
if (tmp < TILE_SIZE*8192)
printf("scratch buffer size needs to be at least %i\n",
TILE_SIZE*8192);
else if (tmp & (tmp - 1)) {
printf("scratch buffer size needs to be a power-of-two\n");
} else {
printf("fixed scratch buffer size to %u\n", tmp);
options.scratch_buf_size = tmp;
}
break;
case 'g':
tmp = atoi(optarg);
if (tmp < 0 || tmp > 10)
printf("gpu busy load needs to be bigger than 0 and smaller than 10\n");
else {
printf("gpu busy load factor set to %i\n", tmp);
gpu_busy_load = options.gpu_busy_load = tmp;
}
break;
default:
printf("unkown command options\n");
break;
}
}
if (optind < argc)
printf("unkown command options\n");
}
static void init(void)
{
int i;
unsigned tmp;
drm_fd = drm_open_any();
tmp = gem_aperture_size(drm_fd) / (1024*1024);;
tmp = tmp > 256 ? 256 : tmp;
num_buffers = 2 * tmp / 3;
num_buffers /= 2;
printf("Using %d 1MiB buffers\n", num_buffers);
bufmgr = drm_intel_bufmgr_gem_init(drm_fd, 4096);
drm_intel_bufmgr_gem_enable_reuse(bufmgr);
devid = intel_get_drm_devid(drm_fd);
num_fences = get_num_fences();
batch = intel_batchbuffer_alloc(bufmgr, devid);
busy_bo = drm_intel_bo_alloc(bufmgr, "tiled bo", BUSY_BUF_SIZE, 4096);
for (i = 0; i < num_buffers; i++) {
init_buffer(&buffers[0][i], options.scratch_buf_size);
init_buffer(&buffers[1][i], options.scratch_buf_size);
num_total_tiles += buffers[0][i].num_tiles;
}
current_set = 0;
/* just in case it helps reproducability */
srandom(0xdeadbeef);
}
int main(int argc, char **argv)
{
int i, j;
unsigned *current_permutation, *tmp_permutation;
parse_options(argc, argv);
init();
tile_permutation = malloc(num_total_tiles*sizeof(uint32_t));
current_permutation = malloc(num_total_tiles*sizeof(uint32_t));
tmp_permutation = malloc(num_total_tiles*sizeof(uint32_t));
assert(tile_permutation);
assert(current_permutation);
assert(tmp_permutation);
fan_out();
for (i = 0; i < 512; i++) {
printf("round %i\n", i);
if (i % 64 == 63) {
fan_in_and_check();
printf("everything correct after %i rounds\n", i + 1);
}
target_set = (current_set + 1) & 1;
init_set(target_set);
for (j = 0; j < num_total_tiles; j++)
current_permutation[j] = j;
permute_array(current_permutation, num_total_tiles, exchange_uint);
copy_tiles(current_permutation);
memcpy(tmp_permutation, tile_permutation, sizeof(unsigned)*num_total_tiles);
/* accumulate the permutations */
for (j = 0; j < num_total_tiles; j++)
tile_permutation[j] = current_permutation[tmp_permutation[j]];
current_set = target_set;
}
fan_in_and_check();
intel_batchbuffer_free(batch);
drm_intel_bufmgr_destroy(bufmgr);
close(drm_fd);
return 0;
}