1
0
mirror of https://github.com/elima/gpu-playground.git synced 2025-06-07 07:56:21 +00:00

1151 lines
38 KiB
C

/*
* Example:
*
* Vulkan triangle: (yet another) Vulkan triangle demo.
*
* This example shows a triangle rendered by Vulkan API on an X11 window. It
* supports resizing the window, and toggling fullscreen mode (F-key).
*
* Tested on Linux 4.7, Mesa 12.0, Intel Haswell (gen7+).
*
* Authors:
* * Eduardo Lima Mitev <elima@igalia.com>
*
* This code is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* version 3, or (at your option) any later version as published by
* the Free Software Foundation.
*
* THIS CODE IS PROVIDED AS-IS, WITHOUT WARRANTY OF ANY KIND, OR POSSIBLE
* LIABILITY TO THE AUTHORS FOR ANY CLAIM OR DAMAGE.
*/
#include <assert.h>
#include "common/wsi.h"
#include <fcntl.h>
#include <signal.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
/* 'VK_USE_PLATFORM_X_KHR' currently defined as flag in Makefile */
#include <vulkan/vulkan.h>
#include "common/vk-api.h"
#define WIDTH 640
#define HEIGHT 480
static struct vk_api vk = { NULL, };
static const VkAllocationCallbacks* allocator = VK_NULL_HANDLE;
struct vk_objects {
VkPhysicalDevice physical_device;
VkDevice device;
VkSurfaceKHR surface;
VkQueue graphics_queue;
VkCommandPool cmd_pool;
VkPipelineShaderStageCreateInfo shader_stages[2];
VkSemaphore image_available_semaphore;
VkSemaphore render_finished_semaphore;
};
struct vk_config {
VkSurfaceCapabilitiesKHR surface_caps;
VkSurfaceFormatKHR surface_format;
VkPresentModeKHR present_mode;
};
#define MAX_SWAPCHAIN_IMAGES 8
struct vk_state {
VkExtent2D surface_extent;
VkSwapchainKHR swapchain;
VkSwapchainKHR previous_swapchain;
uint32_t swapchain_images_count;
VkImageView image_views[MAX_SWAPCHAIN_IMAGES];
VkFramebuffer framebuffers[MAX_SWAPCHAIN_IMAGES];
VkRenderPass renderpass;
VkPipelineLayout pipeline_layout;
VkPipeline pipeline;
VkCommandBuffer cmd_buffers[MAX_SWAPCHAIN_IMAGES];
};
static struct vk_objects objs = {VK_NULL_HANDLE,};
static struct vk_config config = {0,};
static struct vk_state state = {0,};
static bool running = false;
static bool damaged = false;
static bool expose = false;
static bool
recreate_swapchain (struct vk_objects* objs,
struct vk_config* config,
struct vk_state* state);
static uint32_t*
load_file (const char* filename, size_t* file_size)
{
char *data = NULL;
size_t size = 0;
size_t read_size = 0;
size_t alloc_size = 0;
int fd = open (filename, O_RDONLY);
uint8_t buf[1024];
while ((read_size = read (fd, buf, 1024)) > 0) {
if (size + read_size > alloc_size) {
alloc_size = read_size + size;
data = realloc (data, alloc_size);
}
memcpy (data + size, buf, read_size);
size += read_size;
}
if (read_size == 0) {
if (file_size)
*file_size = size;
return (uint32_t*) data;
}
else {
return NULL;
}
}
static void
ctrl_c_handler (int32_t dummy)
{
running = false;
signal (SIGINT, NULL);
}
static bool
create_renderpass (struct vk_objects* objs,
struct vk_config* config,
struct vk_state* state)
{
assert (objs->device != VK_NULL_HANDLE);
state->renderpass = VK_NULL_HANDLE;
/* config a color attachment */
VkAttachmentDescription color_attachment = {
.format = config->surface_format.format,
.samples = VK_SAMPLE_COUNT_1_BIT,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
};
/* an attachment reference */
VkAttachmentReference color_attachment_ref = {
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
};
/* a render sub-pass */
VkSubpassDescription render_subpass = {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.colorAttachmentCount = 1,
.pColorAttachments = &color_attachment_ref,
};
VkSubpassDependency dependency = {
.srcSubpass = VK_SUBPASS_EXTERNAL,
.dstSubpass = 0,
.srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
.srcAccessMask = VK_ACCESS_MEMORY_READ_BIT,
.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT
};
/* create a render pass */
VkRenderPassCreateInfo render_pass_info = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = &color_attachment,
.subpassCount = 1,
.pSubpasses = &render_subpass,
.dependencyCount = 1,
.pDependencies = &dependency
};
if (vk.CreateRenderPass (objs->device,
&render_pass_info,
allocator,
&state->renderpass) != VK_SUCCESS) {
printf ("Error: Failed to create render pass\n");
return false;
}
printf ("Render pass created\n");
return true;
}
static bool
create_pipeline (struct vk_objects* objs,
struct vk_config* config,
struct vk_state* state)
{
assert (objs->device != VK_NULL_HANDLE);
assert (state->renderpass != VK_NULL_HANDLE);
/* specify the vertex input */
VkPipelineVertexInputStateCreateInfo vertex_input_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 0,
.pVertexBindingDescriptions = NULL,
.vertexAttributeDescriptionCount = 0,
.pVertexAttributeDescriptions = NULL
};
/* specify the input assembly (type of primitives) */
VkPipelineInputAssemblyStateCreateInfo input_assembly_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
.primitiveRestartEnable = VK_FALSE,
};
/* viewport and scissors */
VkViewport viewport = {
.x = 0.0f,
.y = 0.0f,
.width = (float) state->surface_extent.width,
.height = (float) state->surface_extent.height,
.minDepth = 0.0f,
.maxDepth = 1.0f
};
VkRect2D scissor = {
.offset.x = 0,
.offset.y = 0,
.extent = state->surface_extent
};
VkPipelineViewportStateCreateInfo viewport_state_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.pViewports = &viewport,
.scissorCount = 1,
.pScissors = &scissor
};
/* configure rasterizer */
VkPipelineRasterizationStateCreateInfo rasterizer = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.depthClampEnable = VK_FALSE,
.rasterizerDiscardEnable = VK_FALSE,
.polygonMode = VK_POLYGON_MODE_FILL,
.lineWidth = 1.0f,
.cullMode = VK_CULL_MODE_BACK_BIT,
.frontFace = VK_FRONT_FACE_CLOCKWISE,
.depthBiasEnable = VK_FALSE,
.depthBiasConstantFactor = 0.0f,
.depthBiasClamp = 0.0f,
.depthBiasSlopeFactor = 0.0f
};
/* configure multisampling */
VkPipelineMultisampleStateCreateInfo multisampling = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.sampleShadingEnable = VK_FALSE,
.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT,
.minSampleShading = 1.0f,
.pSampleMask = NULL,
.alphaToCoverageEnable = VK_FALSE,
.alphaToOneEnable = VK_FALSE
};
/* color blending */
VkPipelineColorBlendAttachmentState color_blend_attachment = {
.colorWriteMask =
VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT
| VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT,
.blendEnable = VK_FALSE,
.srcColorBlendFactor = VK_BLEND_FACTOR_ONE,
.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO,
.colorBlendOp = VK_BLEND_OP_ADD,
.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE,
.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO,
.alphaBlendOp = VK_BLEND_OP_ADD
};
VkPipelineColorBlendStateCreateInfo color_blending_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.logicOpEnable = VK_FALSE,
.logicOp = VK_LOGIC_OP_COPY,
.attachmentCount = 1,
.pAttachments = &color_blend_attachment,
.blendConstants[0] = 0.0f,
.blendConstants[1] = 0.0f,
.blendConstants[2] = 0.0f,
.blendConstants[3] = 0.0f,
};
vk.DestroyPipelineLayout (objs->device,
state->pipeline_layout,
allocator);
/* pipeline layout */
VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
VkPipelineLayoutCreateInfo pipeline_layout_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 0,
.pSetLayouts = NULL,
.pushConstantRangeCount = 0,
.pPushConstantRanges = 0
};
if (vk.CreatePipelineLayout (objs->device,
&pipeline_layout_info,
NULL,
&pipeline_layout) != VK_SUCCESS) {
printf ("Error: Failed to create a pipeline layout\n");
return false;
}
state->pipeline_layout = pipeline_layout;
printf ("Pipeline layout created\n");
/* the graphics pipeline */
VkPipeline pipeline = VK_NULL_HANDLE;
VkGraphicsPipelineCreateInfo pipeline_info = {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = 2,
.pStages = objs->shader_stages,
.pVertexInputState = &vertex_input_info,
.pInputAssemblyState = &input_assembly_info,
.pViewportState = &viewport_state_info,
.pRasterizationState = &rasterizer,
.pMultisampleState = &multisampling,
.pDepthStencilState = NULL,
.pColorBlendState = &color_blending_info,
.pDynamicState = NULL,
.layout = pipeline_layout,
.renderPass = state->renderpass,
.subpass = 0,
.basePipelineHandle = VK_NULL_HANDLE,
.basePipelineIndex = -1
};
if (vk.CreateGraphicsPipelines (objs->device,
VK_NULL_HANDLE,
1,
&pipeline_info,
allocator,
&pipeline) != VK_SUCCESS) {
printf ("Error: Failed to create the graphics pipeline\n");
return false;
}
state->pipeline = pipeline;
printf ("Graphics pipeline created\n");
return true;
}
static bool
create_command_buffers (struct vk_objects* objs,
struct vk_config* config,
struct vk_state* state)
{
assert (objs->device != VK_NULL_HANDLE);
assert (objs->cmd_pool != VK_NULL_HANDLE);
assert (state->renderpass != VK_NULL_HANDLE);
/* create command buffers */
VkCommandBufferAllocateInfo cmd_buffer_alloc_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = state->swapchain_images_count,
.commandPool = objs->cmd_pool
};
if (vk.AllocateCommandBuffers (objs->device,
&cmd_buffer_alloc_info,
state->cmd_buffers) != VK_SUCCESS) {
printf ("Error: Failed to allocate command buffers\n");
return false;
}
printf ("Command buffers allocated\n");
/* start recording to command buffers */
for (uint32_t i = 0; i < state->swapchain_images_count; i++) {
assert (state->framebuffers[i] != VK_NULL_HANDLE);
VkCommandBufferBeginInfo begin_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT,
.pInheritanceInfo = NULL
};
if (vk.BeginCommandBuffer (state->cmd_buffers[i],
&begin_info) != VK_SUCCESS) {
printf ("Error: Failed to begin recording of command buffer\n");
return false;
}
/* start a render pass */
VkClearValue clear_color = {{{0.01f, 0.01f, 0.01f, 1.0f}}};
VkOffset2D swapchain_offset = {0, 0};
VkRenderPassBeginInfo renderpass_begin_info = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = state->renderpass,
.framebuffer = state->framebuffers[i],
.renderArea.offset = swapchain_offset,
.renderArea.extent = state->surface_extent,
.clearValueCount = 1,
.pClearValues = &clear_color
};
vk.CmdBeginRenderPass (state->cmd_buffers[i],
&renderpass_begin_info,
VK_SUBPASS_CONTENTS_INLINE);
vk.CmdBindPipeline (state->cmd_buffers[i],
VK_PIPELINE_BIND_POINT_GRAPHICS,
state->pipeline);
vk.CmdDraw (state->cmd_buffers[i], 3, 1, 0, 0);
vk.CmdEndRenderPass (state->cmd_buffers[i]);
vk.EndCommandBuffer (state->cmd_buffers[i]);
}
printf ("Render pass commands recorded in buffer\n");
return true;
}
static bool
recreate_swapchain (struct vk_objects* objs,
struct vk_config* config,
struct vk_state* state)
{
uint32_t width, height;
assert (objs->physical_device != VK_NULL_HANDLE);
assert (objs->device != VK_NULL_HANDLE);
assert (objs->surface != VK_NULL_HANDLE);
/* wait for all async ops on device */
vk.DeviceWaitIdle (objs->device);
/* resolve swap image size */
VkSurfaceCapabilitiesKHR surface_caps;
vk.GetPhysicalDeviceSurfaceCapabilitiesKHR (objs->physical_device,
objs->surface,
&surface_caps);
config->surface_caps = surface_caps;
printf ("Surface's image count (min, max): (%u, %u)\n",
surface_caps.minImageCount,
surface_caps.maxImageCount);
printf ("Surface's current extent (width, height): (%u, %u)\n",
surface_caps.currentExtent.width,
surface_caps.currentExtent.height);
width = surface_caps.currentExtent.width;
height = surface_caps.currentExtent.height;
state->surface_extent.width = width;
state->surface_extent.height = height;
/* destroy previous swapchain */
if (state->swapchain != VK_NULL_HANDLE) {
/* keep record of the previous swapchain to link it to the new one */
if (state->previous_swapchain != VK_NULL_HANDLE)
vk.DestroySwapchainKHR (objs->device,
state->previous_swapchain,
allocator);
state->previous_swapchain = state->swapchain;
state->swapchain = VK_NULL_HANDLE;
}
/* create a swapchain */
VkSwapchainKHR swapchain = VK_NULL_HANDLE;
VkExtent2D swapchain_extent = {width, height};
VkSwapchainCreateInfoKHR swapchain_info = {
.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
.surface = objs->surface,
.minImageCount = config->surface_caps.minImageCount,
.imageFormat = config->surface_format.format,
.imageColorSpace = config->surface_format.colorSpace,
.imageExtent = swapchain_extent,
.imageArrayLayers = 1,
.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = NULL,
.preTransform = config->surface_caps.currentTransform,
.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
.presentMode = config->present_mode,
.clipped = VK_TRUE,
.oldSwapchain = state->previous_swapchain
};
if (vk.CreateSwapchainKHR (objs->device,
&swapchain_info,
allocator,
&swapchain) != VK_SUCCESS) {
printf ("Error: Failed to create a swap chain\n");
return false;
}
state->swapchain = swapchain;
printf ("Swap chain created\n");
/* get the images from the swap chain */
uint32_t swapchain_images_count = 0;
if (vk.GetSwapchainImagesKHR (objs->device,
state->swapchain,
&swapchain_images_count,
NULL) != VK_SUCCESS) {
printf ("Error: Failed to get the images from the swap chain\n");
return false;
}
if (swapchain_images_count > MAX_SWAPCHAIN_IMAGES) {
printf ("Too many images in the swapchain. I can handle only %u\n",
swapchain_images_count);
return false;
}
uint32_t old_swapchain_images_count = state->swapchain_images_count;
state->swapchain_images_count = swapchain_images_count;
printf ("%u images in the swap chain\n", swapchain_images_count);
VkImage swapchain_images[MAX_SWAPCHAIN_IMAGES] = {VK_NULL_HANDLE,};
vk.GetSwapchainImagesKHR (objs->device,
state->swapchain,
&swapchain_images_count,
swapchain_images);
/* destroy previous image views */
for (uint32_t i = 0; i < old_swapchain_images_count; i++) {
if (state->image_views[i] != VK_NULL_HANDLE) {
vk.DestroyImageView (objs->device,
state->image_views[i],
allocator);
state->image_views[i] = VK_NULL_HANDLE;
}
}
/* create an image view for each swapchain image */
VkImageView image_views[8] = {VK_NULL_HANDLE,};
for (uint32_t i = 0; i < swapchain_images_count; i++) {
VkImageViewCreateInfo image_view_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = swapchain_images[i],
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = config->surface_format.format,
.components.r = VK_COMPONENT_SWIZZLE_IDENTITY,
.components.g = VK_COMPONENT_SWIZZLE_IDENTITY,
.components.b = VK_COMPONENT_SWIZZLE_IDENTITY,
.components.a = VK_COMPONENT_SWIZZLE_IDENTITY,
.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.subresourceRange.baseMipLevel = 0,
.subresourceRange.levelCount = 1,
.subresourceRange.baseArrayLayer = 0,
.subresourceRange.layerCount = 1,
};
image_views[i] = VK_NULL_HANDLE;
if (vk.CreateImageView (objs->device,
&image_view_info,
allocator,
&image_views[i]) != VK_SUCCESS) {
printf ("Error: Failed to create image view\n");
return false;
}
state->image_views[i] = image_views[i];
}
printf ("Image views created\n");
/* create a new renderpass */
if (state->renderpass != VK_NULL_HANDLE)
vk.DestroyRenderPass (objs->device, state->renderpass, allocator);
if (! create_renderpass (objs, config, state))
return false;
/* destroy any previous framebuffers */
for (uint32_t i = 0; i < old_swapchain_images_count; i++) {
if (state->framebuffers[i] != VK_NULL_HANDLE) {
vk.DestroyFramebuffer (objs->device,
state->framebuffers[i],
allocator);
state->framebuffers[i] = VK_NULL_HANDLE;
}
}
/* create framebuffers for each image view */
VkFramebuffer framebuffers[MAX_SWAPCHAIN_IMAGES] = {VK_NULL_HANDLE,};
for (uint32_t i = 0; i < swapchain_images_count; i++) {
VkImageView attachments[] = {
state->image_views[i]
};
VkFramebufferCreateInfo framebuffer_info = {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.renderPass = state->renderpass,
.attachmentCount = 1,
.pAttachments = attachments,
.width = swapchain_extent.width,
.height = swapchain_extent.height,
.layers = 1
};
if (vk.CreateFramebuffer (objs->device,
&framebuffer_info,
allocator,
&framebuffers[i]) != VK_SUCCESS) {
printf ("Error: Failed to create a framebuffer\n");
return false;
}
state->framebuffers[i] = framebuffers[i];
}
printf ("Framebuffers created\n");
/* destroy any previous pipeline */
if (state->pipeline != VK_NULL_HANDLE)
vk.DestroyPipeline (objs->device, state->pipeline, allocator);
/* create a new pipeline */
if (! create_pipeline (objs, config, state))
return false;
/* free any previous command buffers */
vk.FreeCommandBuffers (objs->device,
objs->cmd_pool,
old_swapchain_images_count,
state->cmd_buffers);
/* create new command buffers */
if (! create_command_buffers (objs, config, state))
return false;
return true;
}
static bool
draw_frame (struct vk_objects* objs, struct vk_state* state)
{
VkResult result;
/* acquire swapchain's next image */
uint32_t image_index;
result = vk.AcquireNextImageKHR (objs->device,
state->swapchain,
1000000,
objs->image_available_semaphore,
VK_NULL_HANDLE,
&image_index);
if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) {
expose = true;
return true;
} else if (result != VK_SUCCESS) {
printf ("Error: Failed to acquire next image from swap chain\n");
return false;
}
/* submit graphics queue */
VkSemaphore wait_semaphores[] = {objs->image_available_semaphore};
VkSemaphore signal_semaphores[] = {objs->render_finished_semaphore};
VkPipelineStageFlags wait_stages[] =
{VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
VkSubmitInfo submit_info = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.waitSemaphoreCount = 1,
.pWaitSemaphores = wait_semaphores,
.pWaitDstStageMask = wait_stages,
.commandBufferCount = 1,
.pCommandBuffers = &state->cmd_buffers[image_index],
.signalSemaphoreCount = 1,
.pSignalSemaphores = signal_semaphores
};
if (vk.QueueSubmit (objs->graphics_queue,
1,
&submit_info,
VK_NULL_HANDLE) != VK_SUCCESS) {
printf ("Error: Failed to submit queue\n");
return false;
}
/* present the frame */
VkSwapchainKHR swapchains[] = {state->swapchain};
VkPresentInfoKHR present_info = {
.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
.waitSemaphoreCount = 1,
.pWaitSemaphores = signal_semaphores,
.swapchainCount = 1,
.pSwapchains = swapchains,
.pImageIndices = &image_index,
.pResults = NULL
};
result = vk.QueuePresentKHR (objs->graphics_queue, &present_info);
if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) {
expose = true;
return true;
} else if (result != VK_SUCCESS) {
printf ("Error: Failed to present the queue\n");
return false;
}
printf ("Frame!\n");
return true;
}
static void
wsi_on_expose (void)
{
expose = true;
damaged = true;
}
int32_t
main (int32_t argc, char* argv[])
{
/* XCB setup */
/* ======================================================================= */
wsi_init (NULL, WIDTH, HEIGHT, wsi_on_expose);
/* Vulkan setup */
/* ======================================================================= */
/* load API entry points from ICD */
vk_api_load_from_icd (&vk);
/* enummerate available layers */
uint32_t layers_count;
printf ("%p\n", &vk);
vk.EnumerateInstanceLayerProperties (&layers_count, NULL);
printf ("Found %u instance layers\n", layers_count);
if (layers_count > 0) {
VkLayerProperties available_layers[16];
vk.EnumerateInstanceLayerProperties (&layers_count, available_layers);
}
/* enummerate supported instance extensions */
VkExtensionProperties ext_props[16];
uint32_t ext_props_count = 16;
if (vk.EnumerateInstanceExtensionProperties (NULL,
&ext_props_count,
ext_props) != VK_SUCCESS) {
printf ("Error: Failed to enummerate instance extension properties\n");
return -1;
}
printf ("Instance extensions: \n");
for (unsigned i = 0; i < ext_props_count; i++)
printf (" %s(%u)\n",
ext_props[i].extensionName,
ext_props[i].specVersion);
/* the memory allocation callbacks (default by now) */
allocator = VK_NULL_HANDLE;
/* Vulkan application info */
VkApplicationInfo app_info = {
.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
.pApplicationName = "Vulkan triangle example",
.applicationVersion = 0,
.apiVersion = VK_API_VERSION_1_0
};
/* create Vulkan instance */
VkInstance instance = VK_NULL_HANDLE;
const char* enabled_extensions[2] = {
VK_KHR_SURFACE_EXTENSION_NAME,
VK_KHR_XCB_SURFACE_EXTENSION_NAME
};
VkInstanceCreateInfo instance_info = {
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
.pApplicationInfo = &app_info,
.enabledExtensionCount = 2,
.ppEnabledExtensionNames = enabled_extensions,
};
if (vk.CreateInstance (&instance_info,
allocator,
&instance) != VK_SUCCESS) {
printf ("Error: Failed to create Vulkan instance\n");
return -1;
}
printf ("Vulkan instance created\n");
/* load instance-dependent API entry points */
vk_api_load_from_instance (&vk, &instance);
/* query physical devices */
uint32_t num_devices = 5;
VkPhysicalDevice devices[5] = {0};
if (vk.EnumeratePhysicalDevices (instance,
&num_devices,
devices) != VK_SUCCESS) {
printf ("Error: Failed to enummerate Vulkan physical devices\n");
return -1;
}
printf ("Found %u physical devices\n", num_devices);
if (num_devices == 0)
goto free_stuff;
VkPhysicalDevice physical_device = devices[0];
objs.physical_device = physical_device;
/* physical device properties (informative only) */
VkPhysicalDeviceProperties physical_device_props;
vk.GetPhysicalDeviceProperties (physical_device, &physical_device_props);
printf ("Physical device: %s\n", physical_device_props.deviceName);
/* query physical device's queue families */
#define NUM_QUEUE_FAMILIES 5
uint32_t num_queue_families = NUM_QUEUE_FAMILIES;
VkQueueFamilyProperties queue_families[NUM_QUEUE_FAMILIES] = {0};
/* get queue families with NULL first, to retrieve count */
vk.GetPhysicalDeviceQueueFamilyProperties (physical_device,
&num_queue_families,
NULL);
vk.GetPhysicalDeviceQueueFamilyProperties (devices[0],
&num_queue_families,
queue_families);
assert (num_queue_families >= 1);
printf ("Physical device has %u queue families\n", num_queue_families);
for (unsigned i = 0; i < num_queue_families; i++) {
printf ("Queue family index: %u, flags: %u, count: %u\n",
i,
queue_families[i].queueFlags,
queue_families[i].queueCount);
}
uint32_t queue_family_index = 0;
/* Enummerate supported device extensions */
ext_props_count = 16;
if (vk.EnumerateDeviceExtensionProperties (physical_device,
NULL,
&ext_props_count,
ext_props) != VK_SUCCESS) {
printf ("Error: Failed to enummerate device extension properties\n");
return -1;
}
printf ("Device extensions: \n");
for (unsigned i = 0; i < ext_props_count; i++)
printf (" %s(%u)\n",
ext_props[i].extensionName,
ext_props[i].specVersion);
/* create a vulkan surface, from the XCB window (VkSurfaceKHR) */
xcb_window_t* xcb_win = 0;
xcb_connection_t* xcb_conn = NULL;
wsi_get_connection_and_window ((const void**) &xcb_conn,
(const void**) &xcb_win);
VkSurfaceKHR surface = VK_NULL_HANDLE;
VkXcbSurfaceCreateInfoKHR surface_info = {
.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR,
.connection = xcb_conn,
.window = *xcb_win,
};
if (vk.CreateXcbSurfaceKHR (instance,
&surface_info,
allocator,
&surface) != VK_SUCCESS) {
printf ("Error: Failed to create a vulkan surface from an XCB window\n ");
goto free_stuff;
}
objs.surface = surface;
printf ("Vulkan surface created from the XCB window\n");
/* check for present support in the selected queue family */
VkBool32 support_present = VK_FALSE;
vk.GetPhysicalDeviceSurfaceSupportKHR (physical_device,
queue_family_index,
surface,
&support_present);
if (support_present) {
printf ("Queue family supports presentation\n");
} else {
printf ("Queue family doesn't support presentation\n");
goto free_stuff;
}
/* create logical device */
VkDevice device = VK_NULL_HANDLE;
const float queue_priorities = 1.0;
VkDeviceQueueCreateInfo queue_info = {
.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
.flags = 0,
.queueCount = 1,
.pQueuePriorities = &queue_priorities,
.queueFamilyIndex = queue_family_index
};
const char* device_extensions[1] = {VK_KHR_SWAPCHAIN_EXTENSION_NAME};
VkDeviceCreateInfo device_info = {
.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
.pQueueCreateInfos = &queue_info,
.queueCreateInfoCount = 1,
.enabledExtensionCount = 1,
.ppEnabledExtensionNames = device_extensions,
};
if (vk.CreateDevice (devices[0],
&device_info,
allocator,
&device) != VK_SUCCESS) {
printf ("Error: Failed to create Vulkan device\n");
goto free_stuff;
}
objs.device = device;
printf ("Logical device created\n");
/* choose a surface format */
uint32_t surface_formats_count = 0;
vk.GetPhysicalDeviceSurfaceFormatsKHR (physical_device,
surface,
&surface_formats_count,
NULL);
printf ("Found %u surface format(s). Choosing first.\n", surface_formats_count);
if (surface_formats_count == 0) {
printf ("Error: No suitable surface format found\n");
goto free_stuff;
}
surface_formats_count = 1;
VkSurfaceFormatKHR surface_format;
vk.GetPhysicalDeviceSurfaceFormatsKHR (physical_device,
surface,
&surface_formats_count,
&surface_format);
config.surface_format = surface_format;
/* choose a present mode */
uint32_t present_mode_count = 0;
vk.GetPhysicalDeviceSurfacePresentModesKHR (physical_device,
surface,
&present_mode_count,
NULL);
printf ("Found %u present mode(s). Choosing first.\n", present_mode_count);
if (present_mode_count == 0) {
printf ("Error: No suitable present modes found\n");
goto free_stuff;
}
present_mode_count = 1;
VkPresentModeKHR present_mode;
vk.GetPhysicalDeviceSurfacePresentModesKHR (physical_device,
surface,
&present_mode_count,
&present_mode);
config.present_mode = present_mode;
/* load device-dependent API entry points */
vk_api_load_from_device (&vk, &device);
/* create the vertex shader module */
size_t shader_code_size;
uint32_t* shader_code = load_file (CURRENT_DIR "/vert.spv",
&shader_code_size);
if (shader_code == NULL) {
printf ("Error: Failed to load vertex shader code from 'vert.spv'\n");
goto free_stuff;
}
VkShaderModuleCreateInfo shader_info = {
.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
.codeSize = shader_code_size,
.pCode = shader_code,
};
VkShaderModule vert_shader_module;
if (vk.CreateShaderModule (device,
&shader_info,
allocator,
&vert_shader_module) != VK_SUCCESS) {
printf ("Error: Failed to create vertex shader module\n");
goto free_stuff;
}
free (shader_code);
printf ("Vertex shader created\n");
/* create the fragment shader module */
shader_code = load_file (CURRENT_DIR "/frag.spv",
&shader_code_size);
if (shader_code == NULL) {
printf ("Error: Failed to load fragment shader code from 'frag.spv'\n");
goto free_stuff;
}
shader_info.codeSize = shader_code_size;
shader_info.pCode = shader_code;
VkShaderModule frag_shader_module;
if (vk.CreateShaderModule (device,
&shader_info,
allocator,
&frag_shader_module) != VK_SUCCESS) {
printf ("Error: Failed to create fragment shader module\n");
goto free_stuff;
}
free (shader_code);
printf ("Fragment shader created\n");
/* create the shader stages */
VkPipelineShaderStageCreateInfo vert_stage_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = vert_shader_module,
.pName = "main"
};
VkPipelineShaderStageCreateInfo frag_stage_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = frag_shader_module,
.pName = "main"
};
objs.shader_stages[0] = vert_stage_info;
objs.shader_stages[1] = frag_stage_info;
/* get first device queue */
VkQueue queue = VK_NULL_HANDLE;
vk.GetDeviceQueue (device, queue_family_index, 0, &queue);
if (queue == NULL) {
printf ("Error: Failed to get a device queue\n");
goto free_stuff;
}
objs.graphics_queue = queue;
printf ("Got a device queue\n");
/* create command pool */
VkCommandPool cmd_pool = VK_NULL_HANDLE;;
VkCommandPoolCreateInfo cmd_pool_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.flags = 0,
.queueFamilyIndex = queue_family_index,
};
if (vk.CreateCommandPool (device,
&cmd_pool_info,
allocator,
&cmd_pool) != VK_SUCCESS) {
printf ("Error: Failed to create Vulkan device\n");
goto free_stuff;
}
objs.cmd_pool = cmd_pool;
printf ("Command pool created\n");
/* create semaphores */
VkSemaphore image_available_semaphore = VK_NULL_HANDLE;
VkSemaphore render_finished_semaphore = VK_NULL_HANDLE;
VkSemaphoreCreateInfo semaphore_info = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO \
};
if (vk.CreateSemaphore (device,
&semaphore_info,
allocator,
&image_available_semaphore) != VK_SUCCESS ||
vk.CreateSemaphore (device,
&semaphore_info,
allocator,
&render_finished_semaphore) != VK_SUCCESS) {
printf ("Error: Failed to create semaphores\n");
goto free_stuff;
}
objs.image_available_semaphore = image_available_semaphore;
objs.image_available_semaphore = image_available_semaphore;
printf ("Semaphores create\n");
/* create the first swapchain */
if (! recreate_swapchain (&objs, &config, &state)) {
printf ("Error: Failed to create a swap chain\n");
goto free_stuff;
}
/* start the show */
signal (SIGINT, ctrl_c_handler);
running = true;
damaged = true;
expose = true;
/* Map the window onto the screen */
wsi_window_show ();
while (running) {
if (! damaged && ! expose) {
if (! wsi_wait_for_events ())
break;
}
if (expose) {
if (! recreate_swapchain (&objs, &config, &state)) {
printf ("Error: Failed to create a swap chain\n");
break;
}
expose = false;
damaged = true;
}
if (damaged) {
if (! draw_frame (&objs, &state))
break;
damaged = false;
}
}
printf ("Main-loop ended\n");
free_stuff:
/* free all allocated objects, in the right order */
/* wait for all async ops on device */
if (device != VK_NULL_HANDLE)
vk.DeviceWaitIdle (device);
/* destroy state */
/* command buffers are implicitly freed when the command pool is
* destroyed.
*/
vk.DestroyPipeline (device, state.pipeline, allocator);
vk.DestroyPipelineLayout (device, state.pipeline_layout, allocator);
for (uint32_t i = 0; i < state.swapchain_images_count; i++)
vk.DestroyFramebuffer (device, state.framebuffers[i], allocator);
for (uint32_t i = 0; i < state.swapchain_images_count; i++)
vk.DestroyImageView (device, state.image_views[i], allocator);
vk.DestroyRenderPass (device, state.renderpass, allocator);
vk.DestroySwapchainKHR (device, state.previous_swapchain, allocator);
vk.DestroySwapchainKHR (device, state.swapchain, allocator);
/* destroy immutable objects */
vk.DestroySemaphore (device, image_available_semaphore, allocator);
vk.DestroySemaphore (device, render_finished_semaphore, allocator);
vk.DestroyCommandPool (device, cmd_pool, allocator);
vk.DestroyShaderModule (device, vert_shader_module, allocator);
vk.DestroyShaderModule (device, frag_shader_module, allocator);
vk.DestroyDevice (device, allocator);
vk.DestroySurfaceKHR (instance, surface, allocator);
vk.DestroyInstance (instance, allocator);
/* teardown WSI */
wsi_finish ();
printf ("Clean exit\n");
return 0;
}