1
0
mirror of https://github.com/elima/gpu-playground.git synced 2025-06-06 15:36:35 +00:00

Adds a vulkan minimal example

This commit is contained in:
Eduardo Lima Mitev 2016-09-22 10:24:42 +02:00
parent f6e835d449
commit 7eadd11e3e
6 changed files with 1013 additions and 0 deletions

4
.gitignore vendored
View File

@ -1 +1,5 @@
vert.spv
frag.spv
render-nodes-minimal/render-nodes-minimal
vulkan-minimal/vulkan-minimal

View File

@ -1,5 +1,7 @@
all: Makefile
make -C render-nodes-minimal all
make -C vulkan-minimal all
clean:
make -C render-nodes-minimal clean
make -C vulkan-minimal clean

26
vulkan-minimal/Makefile Normal file
View File

@ -0,0 +1,26 @@
TARGET=vulkan-minimal
GLSL_VALIDATOR=../glslangValidator
VULKAN_SO_NAME=vulkan_intel
VULKAN_SO_PATH=~/devel/build/lib
all: Makefile $(TARGET) vert.spv frag.spv
vert.spv: shader.vert
$(GLSL_VALIDATOR) -V shader.vert
frag.spv: shader.frag
$(GLSL_VALIDATOR) -V shader.frag
$(TARGET): main.c vert.spv frag.spv
gcc -ggdb -O0 -Wall -std=c99 \
-DCURRENT_DIR=\"`pwd`\" \
`pkg-config --libs --cflags xcb` \
-L $(VULKAN_SO_PATH) \
-l$(VULKAN_SO_NAME) \
-o $(TARGET) \
main.c
clean:
rm -f $(TARGET) vert.spv frag.spv

947
vulkan-minimal/main.c Normal file
View File

@ -0,0 +1,947 @@
/*
* Example:
*
* Vulkan minimal: An absolute minimal Vulkan demo.
*
* This example renders a triangle using the Vulkan API on an X11 window.
* It does the minimum required to put pixels on the screen, and not much
* more (e.g, doesn't support resizing the window).
*
* Tested on Linux 4.7, Mesa 12.0, Intel GPU (gen7+).
*
* Authors:
* * Eduardo Lima Mitev <elima@igalia.com>
*
* This code is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* version 3, or (at your option) any later version as published by
* the Free Software Foundation.
*
* THIS CODE IS PROVIDED AS-IS, WITHOUT WARRANTY OF ANY KIND, OR POSSIBLE
* LIABILITY TO THE AUTHORS FOR ANY CLAIM OR DAMAGE.
*/
#include <assert.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <xcb/xcb.h>
#define VK_USE_PLATFORM_XCB_KHR
#include <vulkan/vulkan.h>
#define WIDTH 640
#define HEIGHT 480
PFN_vkVoidFunction vk_icdGetInstanceProcAddr (VkInstance instance,
const char* pName);
#define GET_ICD_PROC_ADDR(api, symbol) \
api.symbol = (PFN_vk ##symbol) vk_icdGetInstanceProcAddr(NULL, "vk" #symbol);
#define GET_PROC_ADDR(api, symbol) \
api.symbol = (PFN_vk ##symbol) api.GetInstanceProcAddr(NULL, "vk" #symbol);
#define GET_INSTANCE_PROC_ADDR(api, instance, symbol) \
api.symbol = (PFN_vk ##symbol) api.GetInstanceProcAddr(instance, "vk" #symbol);
#define GET_DEVICE_PROC_ADDR(api, device, symbol) \
api.symbol = (PFN_vk ##symbol) api.GetDeviceProcAddr(device, "vk" #symbol);
struct vk_api {
PFN_vkGetInstanceProcAddr GetInstanceProcAddr;
PFN_vkGetDeviceProcAddr GetDeviceProcAddr;
PFN_vkEnumerateInstanceLayerProperties EnumerateInstanceLayerProperties;
PFN_vkEnumerateInstanceExtensionProperties EnumerateInstanceExtensionProperties;
PFN_vkCreateInstance CreateInstance;
PFN_vkEnumeratePhysicalDevices EnumeratePhysicalDevices;
PFN_vkGetPhysicalDeviceProperties GetPhysicalDeviceProperties;
PFN_vkGetPhysicalDeviceQueueFamilyProperties GetPhysicalDeviceQueueFamilyProperties;
PFN_vkCreateDevice CreateDevice;
PFN_vkEnumerateDeviceExtensionProperties EnumerateDeviceExtensionProperties;
PFN_vkGetDeviceQueue GetDeviceQueue;
PFN_vkCreateCommandPool CreateCommandPool;
PFN_vkAllocateCommandBuffers AllocateCommandBuffers;
PFN_vkFreeCommandBuffers FreeCommandBuffers;
PFN_vkCreateRenderPass CreateRenderPass;
PFN_vkDestroyRenderPass DestroyRenderPass;
PFN_vkDestroyCommandPool DestroyCommandPool;
PFN_vkDestroyDevice DestroyDevice;
PFN_vkDestroyInstance DestroyInstance;
PFN_vkCreateGraphicsPipelines CreateGraphicsPipelines;
PFN_vkDestroyPipeline DestroyPipeline;
PFN_vkCreateShaderModule CreateShaderModule;
PFN_vkDestroyShaderModule DestroyShaderModule;
PFN_vkCreatePipelineLayout CreatePipelineLayout;
PFN_vkDestroyPipelineLayout DestroyPipelineLayout;
PFN_vkCreateImageView CreateImageView;
PFN_vkDestroyImageView DestroyImageView;
PFN_vkCreateFramebuffer CreateFramebuffer;
PFN_vkDestroyFramebuffer DestroyFramebuffer;
PFN_vkBeginCommandBuffer BeginCommandBuffer;
PFN_vkEndCommandBuffer EndCommandBuffer;
PFN_vkCmdBeginRenderPass CmdBeginRenderPass;
PFN_vkCmdBindPipeline CmdBindPipeline;
PFN_vkCmdDraw CmdDraw;
PFN_vkCmdEndRenderPass CmdEndRenderPass;
PFN_vkCreateSemaphore CreateSemaphore;
PFN_vkDestroySemaphore DestroySemaphore;
PFN_vkQueueSubmit QueueSubmit;
PFN_vkDeviceWaitIdle DeviceWaitIdle;
PFN_vkCreateXcbSurfaceKHR CreateXcbSurfaceKHR;
PFN_vkDestroySurfaceKHR DestroySurfaceKHR;
PFN_vkGetPhysicalDeviceSurfaceSupportKHR GetPhysicalDeviceSurfaceSupportKHR;
PFN_vkGetPhysicalDeviceSurfaceFormatsKHR GetPhysicalDeviceSurfaceFormatsKHR;
PFN_vkGetPhysicalDeviceSurfacePresentModesKHR GetPhysicalDeviceSurfacePresentModesKHR;
PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR GetPhysicalDeviceSurfaceCapabilitiesKHR;
PFN_vkCreateSwapchainKHR CreateSwapchainKHR;
PFN_vkDestroySwapchainKHR DestroySwapchainKHR;
PFN_vkGetSwapchainImagesKHR GetSwapchainImagesKHR;
PFN_vkAcquireNextImageKHR AcquireNextImageKHR;
PFN_vkQueuePresentKHR QueuePresentKHR;
};
static uint32_t*
load_file (const char* filename, size_t* file_size)
{
char* data = NULL;
size_t size = 0;
size_t read_size = 0;
size_t alloc_size = 0;
int32_t fd = open (filename, O_RDONLY);
uint8_t buf[1024];
while ((read_size = read (fd, buf, 1024)) > 0) {
if (size + read_size > alloc_size) {
alloc_size = read_size + size;
data = realloc (data, alloc_size);
}
memcpy (data + size, buf, read_size);
size += read_size;
}
if (read_size == 0) {
if (file_size)
*file_size = size;
return (uint32_t*) data;
}
else {
return NULL;
}
}
int32_t
main (int32_t argc, char* argv[])
{
VkResult result;
struct vk_api vk;
/* XCB setup */
/* ======================================================================= */
/* connection to the X server */
xcb_connection_t* xcb_conn = xcb_connect (NULL, NULL);
assert (xcb_conn != NULL);
/* Get the first screen */
const xcb_setup_t* xcb_setup = xcb_get_setup (xcb_conn);
xcb_screen_iterator_t iter = xcb_setup_roots_iterator (xcb_setup);
xcb_screen_t* xcb_screen = iter.data;
assert (xcb_screen != NULL);
/* Create the window */
xcb_window_t xcb_win = xcb_generate_id (xcb_conn);
uint32_t value_mask, value_list[32];
value_mask = XCB_CW_BACK_PIXEL | XCB_CW_EVENT_MASK;
value_list[0] = xcb_screen->black_pixel;
value_list[1] = XCB_EVENT_MASK_KEY_RELEASE | XCB_EVENT_MASK_EXPOSURE |
XCB_EVENT_MASK_STRUCTURE_NOTIFY;
xcb_create_window (xcb_conn, /* Connection */
XCB_COPY_FROM_PARENT, /* depth (same as root)*/
xcb_win, /* window Id */
xcb_screen->root, /* parent window */
0, 0, /* x, y */
WIDTH, HEIGHT, /* width, height */
0, /* border_width */
XCB_WINDOW_CLASS_INPUT_OUTPUT, /* class */
xcb_screen->root_visual, /* visual */
value_mask, value_list); /* masks, not used yet */
/* Map the window onto the screen */
xcb_map_window (xcb_conn, xcb_win);
/* Make sure commands are sent before we pause so that the window gets
* shown.
*/
xcb_flush (xcb_conn);
/* Vulkan setup */
/* ======================================================================= */
/* load inital API entry points */
GET_ICD_PROC_ADDR (vk, GetInstanceProcAddr);
GET_PROC_ADDR (vk, EnumerateInstanceLayerProperties);
GET_PROC_ADDR (vk, EnumerateInstanceExtensionProperties);
GET_PROC_ADDR (vk, CreateInstance);
/* enummerate supported instance extensions, where we normally check for
* support for window systems integration and presence of VK_KHR_surface.
*/
VkExtensionProperties ext_props[16];
uint32_t ext_props_count = 16;
result = vk.EnumerateInstanceExtensionProperties (NULL,
&ext_props_count,
ext_props);
assert (result == VK_SUCCESS);
printf ("Instance extensions:\n");
for (unsigned i = 0; i < ext_props_count; i++)
printf (" %s(%u)\n",
ext_props[i].extensionName,
ext_props[i].specVersion);
/* the memory allocation callbacks (default by now) */
const VkAllocationCallbacks* allocator = NULL;
/* Vulkan application info */
VkApplicationInfo app_info = {
.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
.pApplicationName = "Vulkan minimal example",
.apiVersion = VK_API_VERSION_1_0,
};
/* create the Vulkan instance */
VkInstance instance = VK_NULL_HANDLE;
const char* enabled_extensions[2] = {
VK_KHR_SURFACE_EXTENSION_NAME,
VK_KHR_XCB_SURFACE_EXTENSION_NAME
};
VkInstanceCreateInfo instance_info = {
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
.pApplicationInfo = &app_info,
.enabledExtensionCount = 2,
.ppEnabledExtensionNames = enabled_extensions
};
result = vk.CreateInstance (&instance_info,
allocator,
&instance);
assert (result == VK_SUCCESS);
/* load instance-dependent API entry points */
GET_INSTANCE_PROC_ADDR (vk, instance, DestroyInstance);
GET_INSTANCE_PROC_ADDR (vk, instance, EnumeratePhysicalDevices);
GET_INSTANCE_PROC_ADDR (vk, instance, GetPhysicalDeviceQueueFamilyProperties);
GET_INSTANCE_PROC_ADDR (vk, instance, CreateDevice);
GET_INSTANCE_PROC_ADDR (vk, instance, EnumerateDeviceExtensionProperties);
GET_INSTANCE_PROC_ADDR (vk, instance, GetPhysicalDeviceProperties);
GET_INSTANCE_PROC_ADDR (vk, instance, CreateXcbSurfaceKHR);
GET_INSTANCE_PROC_ADDR (vk, instance, DestroySurfaceKHR);
GET_INSTANCE_PROC_ADDR (vk, instance, GetPhysicalDeviceSurfaceSupportKHR);
GET_INSTANCE_PROC_ADDR (vk, instance, GetPhysicalDeviceSurfaceFormatsKHR);
GET_INSTANCE_PROC_ADDR (vk, instance,
GetPhysicalDeviceSurfacePresentModesKHR);
GET_INSTANCE_PROC_ADDR (vk, instance,
GetPhysicalDeviceSurfaceCapabilitiesKHR);
/* query physical devices */
uint32_t num_devices = 5;
VkPhysicalDevice devices[5] = {0};
result = vk.EnumeratePhysicalDevices (instance,
&num_devices,
devices);
assert (result == VK_SUCCESS);
assert (num_devices > 0);
VkPhysicalDevice physical_device = devices[0];
/* query physical device's queue families */
uint32_t num_queue_families = 5;
VkQueueFamilyProperties queue_families[5] = {0};
/* get queue families with NULL first, to retrieve count */
vk.GetPhysicalDeviceQueueFamilyProperties (physical_device,
&num_queue_families,
NULL);
vk.GetPhysicalDeviceQueueFamilyProperties (devices[0],
&num_queue_families,
queue_families);
assert (num_queue_families >= 1);
uint32_t queue_family_index = 0;
assert (queue_families[queue_family_index].queueFlags &
VK_QUEUE_GRAPHICS_BIT);
/* Enummerate supported device extensions, where we would normally check for
* the presence of VK_KHR_swapchain.
*/
ext_props_count = 16;
result = vk.EnumerateDeviceExtensionProperties (physical_device,
NULL,
&ext_props_count,
ext_props);
assert (result == VK_SUCCESS);
printf ("Device extensions: \n");
for (unsigned i = 0; i < ext_props_count; i++)
printf (" %s(%u)\n",
ext_props[i].extensionName,
ext_props[i].specVersion);
/* create a vulkan surface, from the XCB window (VkSurfaceKHR) */
VkSurfaceKHR surface = VK_NULL_HANDLE;
VkXcbSurfaceCreateInfoKHR surface_info = {
.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR,
.connection = xcb_conn,
.window = xcb_win
};
result = vk.CreateXcbSurfaceKHR (instance,
&surface_info,
allocator,
&surface);
assert (result == VK_SUCCESS);
/* check for present support in the selected queue family */
VkBool32 support_present = VK_FALSE;
vk.GetPhysicalDeviceSurfaceSupportKHR (physical_device,
queue_family_index,
surface,
&support_present);
assert (support_present);
/* physical device capabilities (needed by swapchain for
* minImageCount and maxImageCount.
*/
VkSurfaceCapabilitiesKHR surface_caps;
result = vk.GetPhysicalDeviceSurfaceCapabilitiesKHR (physical_device,
surface,
&surface_caps);
assert (result == VK_SUCCESS);
/* choose a surface format */
uint32_t surface_formats_count;
result = vk.GetPhysicalDeviceSurfaceFormatsKHR (physical_device,
surface,
&surface_formats_count,
NULL);
assert (surface_formats_count > 0);
surface_formats_count = 1;
VkSurfaceFormatKHR surface_format;
result = vk.GetPhysicalDeviceSurfaceFormatsKHR (physical_device,
surface,
&surface_formats_count,
&surface_format);
assert (result == VK_SUCCESS || result == VK_INCOMPLETE);
/* choose a present mode */
VkPresentModeKHR present_mode;
uint32_t present_mode_count = 1;
result = vk.GetPhysicalDeviceSurfacePresentModesKHR (physical_device,
surface,
&present_mode_count,
&present_mode);
assert (result == VK_SUCCESS || result == VK_INCOMPLETE);
assert (present_mode_count > 0);
/* create logical device */
VkDevice device = VK_NULL_HANDLE;
const float queue_priorities = 1.0;
VkDeviceQueueCreateInfo queue_info = {
.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
.flags = 0,
.queueCount = 1,
.pQueuePriorities = &queue_priorities,
.queueFamilyIndex = queue_family_index
};
const char* device_extensions[1] = {VK_KHR_SWAPCHAIN_EXTENSION_NAME};
VkDeviceCreateInfo device_info = {
.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
.pQueueCreateInfos = &queue_info,
.queueCreateInfoCount = 1,
.enabledExtensionCount = 1,
.ppEnabledExtensionNames = device_extensions,
};
result = vk.CreateDevice (devices[0],
&device_info,
allocator,
&device);
assert (result == VK_SUCCESS);
/* load device-dependent API entry points */
GET_INSTANCE_PROC_ADDR (vk, instance, GetDeviceProcAddr);
GET_DEVICE_PROC_ADDR (vk, device, CreateCommandPool);
GET_DEVICE_PROC_ADDR (vk, device, CmdBeginRenderPass);
GET_DEVICE_PROC_ADDR (vk, device, CmdDraw);
GET_DEVICE_PROC_ADDR (vk, device, CmdEndRenderPass);
GET_DEVICE_PROC_ADDR (vk, device, AllocateCommandBuffers);
GET_DEVICE_PROC_ADDR (vk, device, FreeCommandBuffers);
GET_DEVICE_PROC_ADDR (vk, device, GetDeviceQueue);
GET_DEVICE_PROC_ADDR (vk, device, CreateRenderPass);
GET_DEVICE_PROC_ADDR (vk, device, DestroyRenderPass);
GET_DEVICE_PROC_ADDR (vk, device, DestroyCommandPool);
GET_DEVICE_PROC_ADDR (vk, device, DestroyDevice);
GET_DEVICE_PROC_ADDR (vk, device, CreateGraphicsPipelines);
GET_DEVICE_PROC_ADDR (vk, device, DestroyPipeline);
GET_DEVICE_PROC_ADDR (vk, device, CreateShaderModule);
GET_DEVICE_PROC_ADDR (vk, device, DestroyShaderModule);
GET_DEVICE_PROC_ADDR (vk, device, CreatePipelineLayout);
GET_DEVICE_PROC_ADDR (vk, device, DestroyPipelineLayout);
GET_DEVICE_PROC_ADDR (vk, device, CreateImageView);
GET_DEVICE_PROC_ADDR (vk, device, DestroyImageView);
GET_DEVICE_PROC_ADDR (vk, device, CreateFramebuffer);
GET_DEVICE_PROC_ADDR (vk, device, DestroyFramebuffer);
GET_DEVICE_PROC_ADDR (vk, device, BeginCommandBuffer);
GET_DEVICE_PROC_ADDR (vk, device, EndCommandBuffer);
GET_DEVICE_PROC_ADDR (vk, device, CmdBindPipeline);
GET_DEVICE_PROC_ADDR (vk, device, CreateSemaphore);
GET_DEVICE_PROC_ADDR (vk, device, DestroySemaphore);
GET_DEVICE_PROC_ADDR (vk, device, QueueSubmit);
GET_DEVICE_PROC_ADDR (vk, device, DeviceWaitIdle);
GET_DEVICE_PROC_ADDR (vk, device, CreateSwapchainKHR);
GET_DEVICE_PROC_ADDR (vk, device, DestroySwapchainKHR);
GET_DEVICE_PROC_ADDR (vk, device, GetSwapchainImagesKHR);
GET_DEVICE_PROC_ADDR (vk, device, AcquireNextImageKHR);
GET_DEVICE_PROC_ADDR (vk, device, QueuePresentKHR);
/* create the vertex shader module */
size_t shader_code_size;
uint32_t* shader_code = load_file (CURRENT_DIR "/vert.spv",
&shader_code_size);
assert (shader_code != NULL);
VkShaderModuleCreateInfo shader_info = {
.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
.codeSize = shader_code_size,
.pCode = shader_code,
};
VkShaderModule vert_shader_module;
result = vk.CreateShaderModule (device,
&shader_info,
allocator,
&vert_shader_module);
assert (result == VK_SUCCESS);
free (shader_code);
/* create the fragment shader module */
shader_code = load_file (CURRENT_DIR "/frag.spv", &shader_code_size);
assert (shader_code != NULL);
shader_info.codeSize = shader_code_size;
shader_info.pCode = shader_code;
VkShaderModule frag_shader_module;
result = vk.CreateShaderModule (device,
&shader_info,
allocator,
&frag_shader_module);
assert (result == VK_SUCCESS);
free (shader_code);
/* create the shader stages */
VkPipelineShaderStageCreateInfo vert_stage_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = vert_shader_module,
.pName = "main"
};
VkPipelineShaderStageCreateInfo frag_stage_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = frag_shader_module,
.pName = "main"
};
VkPipelineShaderStageCreateInfo shader_stages[2] =
{vert_stage_info, frag_stage_info};
/* get first device queue */
VkQueue queue = VK_NULL_HANDLE;
vk.GetDeviceQueue (device, queue_family_index, 0, &queue);
assert (queue != VK_NULL_HANDLE);
/* create a command pool */
VkCommandPool cmd_pool = VK_NULL_HANDLE;;
VkCommandPoolCreateInfo cmd_pool_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.flags = 0,
.queueFamilyIndex = queue_family_index,
};
result = vk.CreateCommandPool (device,
&cmd_pool_info,
allocator,
&cmd_pool);
assert (result == VK_SUCCESS);
/* create rendering semaphores */
VkSemaphore image_available_semaphore = VK_NULL_HANDLE;
VkSemaphore render_finished_semaphore = VK_NULL_HANDLE;
VkSemaphoreCreateInfo semaphore_info = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO
};
result = vk.CreateSemaphore (device,
&semaphore_info,
allocator,
&image_available_semaphore);
assert (result == VK_SUCCESS);
result = vk.CreateSemaphore (device,
&semaphore_info,
allocator,
&render_finished_semaphore);
assert (result == VK_SUCCESS);
/* create the swapchain. This is normally done in a reusable way, because
* the swapchain needs to be recreated quite often (e.g window resize).
*/
VkSwapchainKHR swapchain = VK_NULL_HANDLE;
/* @FIXME: check extent against surface capabilities */
VkExtent2D swapchain_extent = {WIDTH, HEIGHT};
VkSwapchainCreateInfoKHR swap_chain_info = {
.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
.surface = surface,
.minImageCount = surface_caps.minImageCount,
.imageFormat = surface_format.format,
.imageColorSpace = surface_format.colorSpace,
.imageExtent = swapchain_extent,
.imageArrayLayers = 1,
.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = NULL,
.preTransform = surface_caps.currentTransform,
.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
.presentMode = present_mode,
.clipped = VK_TRUE,
.oldSwapchain = VK_NULL_HANDLE
};
result = vk.CreateSwapchainKHR (device,
&swap_chain_info,
allocator,
&swapchain);
assert (result == VK_SUCCESS);
/* get the images from the swap chain */
uint32_t swapchain_images_count = 0;
result = vk.GetSwapchainImagesKHR (device,
swapchain,
&swapchain_images_count,
NULL);
assert (result == VK_SUCCESS);
assert (swapchain_images_count > 0 && swapchain_images_count <= 8);
VkImage swapchain_images[8] = {VK_NULL_HANDLE};
vk.GetSwapchainImagesKHR (device,
swapchain,
&swapchain_images_count,
swapchain_images);
/* create an image view for each swap chain image */
VkImageView image_views[8];
for (uint32_t i = 0; i < swapchain_images_count; i++) {
VkImageViewCreateInfo image_view_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = swapchain_images[i],
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = surface_format.format,
.components.r = VK_COMPONENT_SWIZZLE_IDENTITY,
.components.g = VK_COMPONENT_SWIZZLE_IDENTITY,
.components.b = VK_COMPONENT_SWIZZLE_IDENTITY,
.components.a = VK_COMPONENT_SWIZZLE_IDENTITY,
.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.subresourceRange.baseMipLevel = 0,
.subresourceRange.levelCount = 1,
.subresourceRange.baseArrayLayer = 0,
.subresourceRange.layerCount = 1,
};
result = vk.CreateImageView (device,
&image_view_info,
allocator,
&image_views[i]);
assert (result == VK_SUCCESS);
}
/* config a color attachment */
VkAttachmentDescription color_attachment = {
.format = surface_format.format,
.samples = VK_SAMPLE_COUNT_1_BIT,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
};
/* an attachment reference */
VkAttachmentReference color_attachment_ref = {
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
};
/* a render sub-pass */
VkSubpassDescription render_subpass = {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.colorAttachmentCount = 1,
.pColorAttachments = &color_attachment_ref,
};
VkSubpassDependency dependency = {
.srcSubpass = VK_SUBPASS_EXTERNAL,
.dstSubpass = 0,
.srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
.srcAccessMask = VK_ACCESS_MEMORY_READ_BIT,
.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT
};
/* create a render pass */
VkRenderPass renderpass = VK_NULL_HANDLE;
VkRenderPassCreateInfo render_pass_info = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = &color_attachment,
.subpassCount = 1,
.pSubpasses = &render_subpass,
.dependencyCount = 1,
.pDependencies = &dependency
};
result = vk.CreateRenderPass (device,
&render_pass_info,
allocator,
&renderpass);
assert (result == VK_SUCCESS);
/* create framebuffers for each image view */
VkFramebuffer framebuffers[4] = {VK_NULL_HANDLE};
for (uint32_t i = 0; i < swapchain_images_count; i++) {
VkImageView attachments[] = {
image_views[i]
};
VkFramebufferCreateInfo framebuffer_info = {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.renderPass = renderpass,
.attachmentCount = 1,
.pAttachments = attachments,
.width = swapchain_extent.width,
.height = swapchain_extent.height,
.layers = 1
};
result = vk.CreateFramebuffer (device,
&framebuffer_info,
allocator,
&framebuffers[i]);
assert (result == VK_SUCCESS);
}
/* create the graphics pipeline */
/* specify the vertex input (all default to zero, since we won't use it here) */
VkPipelineVertexInputStateCreateInfo vertex_input_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO
};
/* specify the input assembly (type of primitives) */
VkPipelineInputAssemblyStateCreateInfo input_assembly_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
.primitiveRestartEnable = VK_FALSE,
};
/* viewport and scissors */
VkViewport viewport = {
.x = 0.0f,
.y = 0.0f,
.width = (float) swapchain_extent.width,
.height = (float) swapchain_extent.height,
.minDepth = 0.0f,
.maxDepth = 1.0f
};
VkRect2D scissor = {
.offset.x = 0,
.offset.y = 0,
.extent = swapchain_extent
};
VkPipelineViewportStateCreateInfo viewport_state_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.pViewports = &viewport,
.scissorCount = 1,
.pScissors = &scissor
};
/* configure rasterizer */
VkPipelineRasterizationStateCreateInfo rasterizer = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.depthClampEnable = VK_FALSE,
.rasterizerDiscardEnable = VK_FALSE,
.polygonMode = VK_POLYGON_MODE_FILL,
.lineWidth = 1.0f,
.cullMode = VK_CULL_MODE_BACK_BIT,
.frontFace = VK_FRONT_FACE_CLOCKWISE,
.depthBiasEnable = VK_FALSE,
.depthBiasConstantFactor = 0.0f,
.depthBiasClamp = 0.0f,
.depthBiasSlopeFactor = 0.0f
};
/* configure multisampling */
VkPipelineMultisampleStateCreateInfo multisampling = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.sampleShadingEnable = VK_FALSE,
.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT,
.minSampleShading = 1.0f,
.pSampleMask = NULL,
.alphaToCoverageEnable = VK_FALSE,
.alphaToOneEnable = VK_FALSE
};
/* color blending */
VkPipelineColorBlendAttachmentState color_blend_attachment = {
.colorWriteMask =
VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT
| VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT,
.blendEnable = VK_FALSE,
.srcColorBlendFactor = VK_BLEND_FACTOR_ONE,
.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO,
.colorBlendOp = VK_BLEND_OP_ADD,
.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE,
.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO,
.alphaBlendOp = VK_BLEND_OP_ADD
};
VkPipelineColorBlendStateCreateInfo color_blending_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.logicOpEnable = VK_FALSE,
.logicOp = VK_LOGIC_OP_COPY,
.attachmentCount = 1,
.pAttachments = &color_blend_attachment,
.blendConstants[0] = 0.0f,
.blendConstants[1] = 0.0f,
.blendConstants[2] = 0.0f,
.blendConstants[3] = 0.0f,
};
/* pipeline layout */
VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
VkPipelineLayoutCreateInfo pipeline_layout_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 0,
.pSetLayouts = NULL,
.pushConstantRangeCount = 0,
.pPushConstantRanges = 0
};
result = vk.CreatePipelineLayout (device,
&pipeline_layout_info,
NULL,
&pipeline_layout);
assert (result == VK_SUCCESS);
/* the pipeline, finally */
VkPipeline pipeline = VK_NULL_HANDLE;
VkGraphicsPipelineCreateInfo pipeline_info = {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = 2,
.pStages = shader_stages,
.pVertexInputState = &vertex_input_info,
.pInputAssemblyState = &input_assembly_info,
.pViewportState = &viewport_state_info,
.pRasterizationState = &rasterizer,
.pMultisampleState = &multisampling,
.pDepthStencilState = NULL,
.pColorBlendState = &color_blending_info,
.pDynamicState = NULL,
.layout = pipeline_layout,
.renderPass = renderpass,
.subpass = 0,
.basePipelineHandle = VK_NULL_HANDLE,
.basePipelineIndex = -1
};
result = vk.CreateGraphicsPipelines (device,
VK_NULL_HANDLE,
1,
&pipeline_info,
allocator,
&pipeline);
assert (result == VK_SUCCESS);
/* create command buffers */
VkCommandBuffer cmd_buffers[8] = {VK_NULL_HANDLE,};
VkCommandBufferAllocateInfo cmd_buffer_alloc_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = swapchain_images_count,
.commandPool = cmd_pool
};
result = vk.AllocateCommandBuffers (device,
&cmd_buffer_alloc_info,
cmd_buffers);
assert (result == VK_SUCCESS);
/* start recording command buffers */
for (uint32_t i = 0; i < swapchain_images_count; i++) {
VkCommandBufferBeginInfo begin_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT,
.pInheritanceInfo = VK_NULL_HANDLE
};
result = vk.BeginCommandBuffer (cmd_buffers[i], &begin_info);
assert (result == VK_SUCCESS);
/* start a render pass */
VkClearValue clear_color = {{{0.01f, 0.01f, 0.01f, 1.0f}}};
VkOffset2D swapchain_offset = {0, 0};
VkRenderPassBeginInfo renderpass_begin_info = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = renderpass,
.framebuffer = framebuffers[i],
.renderArea.offset = swapchain_offset,
.renderArea.extent = swapchain_extent,
.clearValueCount = 1,
.pClearValues = &clear_color
};
vk.CmdBeginRenderPass (cmd_buffers[i],
&renderpass_begin_info,
VK_SUBPASS_CONTENTS_INLINE);
vk.CmdBindPipeline (cmd_buffers[i],
VK_PIPELINE_BIND_POINT_GRAPHICS,
pipeline);
vk.CmdDraw (cmd_buffers[i], 3, 1, 0, 0);
vk.CmdEndRenderPass (cmd_buffers[i]);
vk.EndCommandBuffer (cmd_buffers[i]);
}
/* start the show (mainloop) */
while (VK_TRUE) {
/* acquire next image */
uint32_t image_index;
result = vk.AcquireNextImageKHR (device,
swapchain,
1000,
image_available_semaphore,
VK_NULL_HANDLE,
&image_index);
if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) {
/* swapchain needs recreation */
printf ("EXPOSE event, swapchain needs to be recreated\n");
continue;
}
assert (result == VK_SUCCESS);
/* submit the command buffer to the graphics queue */
VkSemaphore wait_semaphores[] = {image_available_semaphore};
VkSemaphore signal_semaphores[] = {render_finished_semaphore};
VkPipelineStageFlags wait_stages[] =
{VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
VkSubmitInfo submit_info = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.waitSemaphoreCount = 1,
.pWaitSemaphores = wait_semaphores,
.pWaitDstStageMask = wait_stages,
.commandBufferCount = 1,
.pCommandBuffers = &cmd_buffers[image_index],
.signalSemaphoreCount = 1,
.pSignalSemaphores = signal_semaphores
};
result = vk.QueueSubmit (queue,
1,
&submit_info,
VK_NULL_HANDLE);
assert (result == VK_SUCCESS);
/* present the frame */
VkSwapchainKHR swap_chains[] = {swapchain};
VkPresentInfoKHR present_info = {
.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
.waitSemaphoreCount = 1,
.pWaitSemaphores = signal_semaphores,
.swapchainCount = 1,
.pSwapchains = swap_chains,
.pImageIndices = &image_index,
.pResults = NULL
};
/* present the render pass onto the surface. or... DRAW! */
result = vk.QueuePresentKHR (queue, &present_info);
if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) {
/* swapchain needs recreation */
printf ("EXPOSE event, swapchain needs to be recreated\n");
continue;
}
assert (result == VK_SUCCESS);
}
/* free all allocated objects */
/* wait for all async ops on device */
if (device != VK_NULL_HANDLE)
vk.DeviceWaitIdle (device);
/* destroy state */
for (uint32_t i = 0; i < swapchain_images_count; i++)
vk.DestroyFramebuffer (device, framebuffers[i], allocator);
for (uint32_t i = 0; i < swapchain_images_count; i++)
vk.DestroyImageView (device, image_views[i], allocator);
vk.DestroyPipeline (device, pipeline, allocator);
vk.DestroyPipelineLayout (device, pipeline_layout, allocator);
vk.DestroyRenderPass (device, renderpass, allocator);
vk.DestroySwapchainKHR (device, swapchain, allocator);
/* destroy immutable objects */
vk.DestroySemaphore (device, image_available_semaphore, allocator);
vk.DestroySemaphore (device, render_finished_semaphore, allocator);
vk.DestroyCommandPool (device, cmd_pool, allocator);
vk.DestroyShaderModule (device, vert_shader_module, allocator);
vk.DestroyShaderModule (device, frag_shader_module, allocator);
vk.DestroyDevice (device, allocator);
vk.DestroySurfaceKHR (instance, surface, allocator);
vk.DestroyInstance (instance, allocator);
/* Unmap the window from the screen */
xcb_unmap_window (xcb_conn, xcb_win);
/* disconnect from the X server */
if (xcb_conn != NULL)
xcb_disconnect (xcb_conn);
return 0;
}

View File

@ -0,0 +1,9 @@
#version 450
#extension GL_ARB_separate_shader_objects : enable
layout(location = 0) out highp vec4 outColor;
layout(location = 0) in vec3 color;
void main() {
outColor = vec4(color, 1.0);
}

View File

@ -0,0 +1,25 @@
#version 450
#extension GL_ARB_separate_shader_objects : enable
out gl_PerVertex {
vec4 gl_Position;
};
vec2 positions[3] = vec2[](
vec2( 0.0, -0.5),
vec2( 0.5, 0.5),
vec2(-0.5, 0.5)
);
vec3 colors[3] = vec3[] (
vec3(1.0, 0.0, 0.0),
vec3(0.0, 1.0, 0.0),
vec3(0.0, 0.0, 1.0)
);
layout(location = 0) out vec3 color;
void main() {
gl_Position = vec4(positions[gl_VertexIndex], 0.0, 1.0);
color = colors[gl_VertexIndex];
}