ntel-gpu-tools/lib/drmtest.c
Daniel Vetter eebdf7f920 lib: (somewhat) structured logging support
Apparently there's a bit a need for more verbose output in testcases,
mostly for debugging purposes. At least gem_reset_stats and pm_rps
have a verbose mode.

On top of that we're currently not taking advantage of piglit's "warn"
state all that much. But I think it might be useful for testcases which
are notorious for some kinds of spurious failures, like e.g. the really
nasty timing checks in kms_flip. If we demote some of them to just
warnings we could run the overall tests more often.

Hence this patchs adds a new igt_log function with the three levels DEBUG,
INFO and WARN. Plus a bunch of convenience helpers to keep the test
code tidy.

The level can be set through an enviroment vairable IGT_LOG_LEVEL with
info being the default. Also tests can look at the selected log level in
case they want to run costly debug functions only when needed.

Comments highly welcome, I plan to roll this out over tests which can
use it (not all, imo that's too much churn) once we've settled on the
interfaces/semantics.

Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-02-13 14:41:40 +01:00

1764 lines
35 KiB
C

/*
* Copyright © 2007, 2011, 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Daniel Vetter <daniel.vetter@ffwll.ch>
*
*/
#ifndef ANDROID
#define _GNU_SOURCE
#else
#include <libgen.h>
#endif
#include <stdio.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <string.h>
#include <sys/mman.h>
#include <signal.h>
#include <pciaccess.h>
#include <getopt.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <sys/syscall.h>
#include <sys/utsname.h>
#include <termios.h>
#include "drmtest.h"
#include "i915_drm.h"
#include "intel_chipset.h"
#include "intel_gpu_tools.h"
#include "igt_debugfs.h"
#include "../version.h"
#include "config.h"
/* This file contains a bunch of wrapper functions to directly use gem ioctls.
* Mostly useful to write kernel tests. */
drm_intel_bo *
gem_handle_to_libdrm_bo(drm_intel_bufmgr *bufmgr, int fd, const char *name, uint32_t handle)
{
struct drm_gem_flink flink;
int ret;
drm_intel_bo *bo;
flink.handle = handle;
ret = ioctl(fd, DRM_IOCTL_GEM_FLINK, &flink);
igt_assert(ret == 0);
bo = drm_intel_bo_gem_create_from_name(bufmgr, name, flink.name);
igt_assert(bo);
return bo;
}
static int
is_intel(int fd)
{
struct drm_i915_getparam gp;
int devid;
gp.param = I915_PARAM_CHIPSET_ID;
gp.value = &devid;
if (ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp)))
return 0;
return IS_INTEL(devid);
}
bool gem_uses_aliasing_ppgtt(int fd)
{
struct drm_i915_getparam gp;
int val;
gp.param = 18; /* HAS_ALIASING_PPGTT */
gp.value = &val;
if (ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp)))
return 0;
return val;
}
int gem_available_fences(int fd)
{
struct drm_i915_getparam gp;
int val;
gp.param = I915_PARAM_NUM_FENCES_AVAIL;
gp.value = &val;
if (ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp)))
return 0;
return val;
}
#define LOCAL_I915_EXEC_VEBOX (4 << 0)
/* Ensure the gpu is idle by launching a nop execbuf and stalling for it. */
void gem_quiescent_gpu(int fd)
{
uint32_t batch[2] = {MI_BATCH_BUFFER_END, 0};
uint32_t handle;
struct drm_i915_gem_execbuffer2 execbuf;
struct drm_i915_gem_exec_object2 gem_exec[1];
handle = gem_create(fd, 4096);
gem_write(fd, handle, 0, batch, sizeof(batch));
gem_exec[0].handle = handle;
gem_exec[0].relocation_count = 0;
gem_exec[0].relocs_ptr = 0;
gem_exec[0].alignment = 0;
gem_exec[0].offset = 0;
gem_exec[0].flags = 0;
gem_exec[0].rsvd1 = 0;
gem_exec[0].rsvd2 = 0;
execbuf.buffers_ptr = (uintptr_t)gem_exec;
execbuf.buffer_count = 1;
execbuf.batch_start_offset = 0;
execbuf.batch_len = 8;
execbuf.cliprects_ptr = 0;
execbuf.num_cliprects = 0;
execbuf.DR1 = 0;
execbuf.DR4 = 0;
execbuf.flags = 0;
i915_execbuffer2_set_context_id(execbuf, 0);
execbuf.rsvd2 = 0;
do_ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
if (gem_has_blt(fd)) {
execbuf.flags = I915_EXEC_BLT;
do_ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
}
if (gem_has_bsd(fd)) {
execbuf.flags = I915_EXEC_BSD;
do_ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
}
if (gem_has_vebox(fd)) {
execbuf.flags = LOCAL_I915_EXEC_VEBOX;
do_ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
}
gem_sync(fd, handle);
igt_drop_caches_set(DROP_RETIRE);
gem_close(fd, handle);
}
/**
* drm_get_card() - get an intel card number for use in /dev or /sys
*
* returns -1 on error
*/
int drm_get_card(void)
{
char *name;
int i, fd;
for (i = 0; i < 16; i++) {
int ret;
ret = asprintf(&name, "/dev/dri/card%u", i);
igt_assert(ret != -1);
fd = open(name, O_RDWR);
free(name);
if (fd == -1)
continue;
if (!is_intel(fd)) {
close(fd);
continue;
}
close(fd);
return i;
}
igt_skip("No intel gpu found\n");
return -1;
}
static void oom_adjust_for_doom(void)
{
int fd;
const char always_kill[] = "1000";
fd = open("/proc/self/oom_score_adj", O_WRONLY);
igt_assert(fd != -1);
igt_assert(write(fd, always_kill, sizeof(always_kill)) == sizeof(always_kill));
}
/** Open the first DRM device we can find, searching up to 16 device nodes */
static int __drm_open_any(void)
{
char *name;
int ret, fd;
ret = asprintf(&name, "/dev/dri/card%d", drm_get_card());
if (ret == -1)
return -1;
fd = open(name, O_RDWR);
free(name);
if (!is_intel(fd)) {
close(fd);
fd = -1;
}
oom_adjust_for_doom();
return fd;
}
static int __drm_open_any_render(void)
{
char *name;
int i, fd;
for (i = 128; i < (128 + 16); i++) {
int ret;
ret = asprintf(&name, "/dev/dri/renderD%u", i);
igt_assert(ret != -1);
fd = open(name, O_RDWR);
free(name);
if (fd == -1)
continue;
if (!is_intel(fd)) {
close(fd);
fd = -1;
continue;
}
return fd;
}
oom_adjust_for_doom();
return fd;
}
static int at_exit_drm_fd = -1;
static int at_exit_drm_render_fd = -1;
static void quiescent_gpu_at_exit(int sig)
{
if (at_exit_drm_fd < 0)
return;
gem_quiescent_gpu(at_exit_drm_fd);
close(at_exit_drm_fd);
at_exit_drm_fd = -1;
}
static void quiescent_gpu_at_exit_render(int sig)
{
if (at_exit_drm_render_fd < 0)
return;
gem_quiescent_gpu(at_exit_drm_render_fd);
close(at_exit_drm_render_fd);
at_exit_drm_render_fd = -1;
}
int drm_open_any(void)
{
static int open_count;
int fd = __drm_open_any();
igt_require(fd >= 0);
if (__sync_fetch_and_add(&open_count, 1))
return fd;
gem_quiescent_gpu(fd);
at_exit_drm_fd = dup(fd);
igt_install_exit_handler(quiescent_gpu_at_exit);
return fd;
}
int drm_open_any_render(void)
{
static int open_count;
int fd = __drm_open_any_render();
/* no render nodes, fallback to drm_open_any() */
if (fd == -1)
return drm_open_any();
if (__sync_fetch_and_add(&open_count, 1))
return fd;
at_exit_drm_render_fd = dup(fd);
gem_quiescent_gpu(fd);
igt_install_exit_handler(quiescent_gpu_at_exit_render);
return fd;
}
int __gem_set_tiling(int fd, uint32_t handle, uint32_t tiling, uint32_t stride)
{
struct drm_i915_gem_set_tiling st;
int ret;
memset(&st, 0, sizeof(st));
do {
st.handle = handle;
st.tiling_mode = tiling;
st.stride = tiling ? stride : 0;
ret = ioctl(fd, DRM_IOCTL_I915_GEM_SET_TILING, &st);
} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
if (ret != 0)
return -errno;
igt_assert(st.tiling_mode == tiling);
return 0;
}
void gem_set_tiling(int fd, uint32_t handle, uint32_t tiling, uint32_t stride)
{
igt_assert(__gem_set_tiling(fd, handle, tiling, stride) == 0);
}
bool gem_has_enable_ring(int fd,int param)
{
drm_i915_getparam_t gp;
int ret, tmp;
memset(&gp, 0, sizeof(gp));
gp.value = &tmp;
gp.param = param;
ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
if ((ret == 0) && (*gp.value > 0))
return true;
else
return false;
}
bool gem_has_bsd(int fd)
{
return gem_has_enable_ring(fd,I915_PARAM_HAS_BSD);
}
bool gem_has_blt(int fd)
{
return gem_has_enable_ring(fd,I915_PARAM_HAS_BLT);
}
#define LOCAL_I915_PARAM_HAS_VEBOX 22
bool gem_has_vebox(int fd)
{
return gem_has_enable_ring(fd,LOCAL_I915_PARAM_HAS_VEBOX);
}
int gem_get_num_rings(int fd)
{
int num_rings = 1; /* render ring is always available */
if (gem_has_bsd(fd))
num_rings++;
else
goto skip;
if (gem_has_blt(fd))
num_rings++;
else
goto skip;
if (gem_has_vebox(fd))
num_rings++;
else
goto skip;
skip:
return num_rings;
}
struct local_drm_i915_gem_caching {
uint32_t handle;
uint32_t caching;
};
#define LOCAL_DRM_I915_GEM_SET_CACHEING 0x2f
#define LOCAL_DRM_I915_GEM_GET_CACHEING 0x30
#define LOCAL_DRM_IOCTL_I915_GEM_SET_CACHEING \
DRM_IOW(DRM_COMMAND_BASE + LOCAL_DRM_I915_GEM_SET_CACHEING, struct local_drm_i915_gem_caching)
#define LOCAL_DRM_IOCTL_I915_GEM_GET_CACHEING \
DRM_IOWR(DRM_COMMAND_BASE + LOCAL_DRM_I915_GEM_GET_CACHEING, struct local_drm_i915_gem_caching)
void gem_require_caching(int fd)
{
struct local_drm_i915_gem_caching arg;
int ret;
arg.handle = gem_create(fd, 4096);
igt_assert(arg.handle != 0);
arg.caching = 0;
ret = ioctl(fd, LOCAL_DRM_IOCTL_I915_GEM_SET_CACHEING, &arg);
gem_close(fd, arg.handle);
igt_require(ret == 0);
}
void gem_set_caching(int fd, uint32_t handle, int caching)
{
struct local_drm_i915_gem_caching arg;
int ret;
arg.handle = handle;
arg.caching = caching;
ret = ioctl(fd, LOCAL_DRM_IOCTL_I915_GEM_SET_CACHEING, &arg);
igt_assert(ret == 0 || (errno == ENOTTY || errno == EINVAL));
igt_require(ret == 0);
}
uint32_t gem_get_caching(int fd, uint32_t handle)
{
struct local_drm_i915_gem_caching arg;
int ret;
arg.handle = handle;
arg.caching = 0;
ret = ioctl(fd, LOCAL_DRM_IOCTL_I915_GEM_GET_CACHEING, &arg);
igt_assert(ret == 0);
return arg.caching;
}
uint32_t gem_open(int fd, uint32_t name)
{
struct drm_gem_open open_struct;
int ret;
open_struct.name = name;
ret = ioctl(fd, DRM_IOCTL_GEM_OPEN, &open_struct);
igt_assert(ret == 0);
igt_assert(open_struct.handle != 0);
return open_struct.handle;
}
uint32_t gem_flink(int fd, uint32_t handle)
{
struct drm_gem_flink flink;
int ret;
flink.handle = handle;
ret = ioctl(fd, DRM_IOCTL_GEM_FLINK, &flink);
igt_assert(ret == 0);
return flink.name;
}
void gem_close(int fd, uint32_t handle)
{
struct drm_gem_close close_bo;
close_bo.handle = handle;
do_ioctl(fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
}
void gem_write(int fd, uint32_t handle, uint32_t offset, const void *buf, uint32_t size)
{
struct drm_i915_gem_pwrite gem_pwrite;
gem_pwrite.handle = handle;
gem_pwrite.offset = offset;
gem_pwrite.size = size;
gem_pwrite.data_ptr = (uintptr_t)buf;
do_ioctl(fd, DRM_IOCTL_I915_GEM_PWRITE, &gem_pwrite);
}
void gem_read(int fd, uint32_t handle, uint32_t offset, void *buf, uint32_t length)
{
struct drm_i915_gem_pread gem_pread;
gem_pread.handle = handle;
gem_pread.offset = offset;
gem_pread.size = length;
gem_pread.data_ptr = (uintptr_t)buf;
do_ioctl(fd, DRM_IOCTL_I915_GEM_PREAD, &gem_pread);
}
void gem_set_domain(int fd, uint32_t handle,
uint32_t read_domains, uint32_t write_domain)
{
struct drm_i915_gem_set_domain set_domain;
set_domain.handle = handle;
set_domain.read_domains = read_domains;
set_domain.write_domain = write_domain;
do_ioctl(fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain);
}
void gem_sync(int fd, uint32_t handle)
{
gem_set_domain(fd, handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
}
uint32_t __gem_create(int fd, int size)
{
struct drm_i915_gem_create create;
int ret;
create.handle = 0;
create.size = size;
ret = drmIoctl(fd, DRM_IOCTL_I915_GEM_CREATE, &create);
if (ret < 0)
return 0;
else
return create.handle;
}
uint32_t gem_create(int fd, int size)
{
struct drm_i915_gem_create create;
create.handle = 0;
create.size = size;
do_ioctl(fd, DRM_IOCTL_I915_GEM_CREATE, &create);
igt_assert(create.handle);
return create.handle;
}
void gem_execbuf(int fd, struct drm_i915_gem_execbuffer2 *execbuf)
{
int ret;
ret = drmIoctl(fd,
DRM_IOCTL_I915_GEM_EXECBUFFER2,
execbuf);
igt_assert(ret == 0);
}
void *gem_mmap__gtt(int fd, uint32_t handle, int size, int prot)
{
struct drm_i915_gem_mmap_gtt mmap_arg;
void *ptr;
mmap_arg.handle = handle;
if (drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg))
return NULL;
ptr = mmap64(0, size, prot, MAP_SHARED, fd, mmap_arg.offset);
if (ptr == MAP_FAILED)
ptr = NULL;
return ptr;
}
void *gem_mmap__cpu(int fd, uint32_t handle, int size, int prot)
{
struct drm_i915_gem_mmap mmap_arg;
mmap_arg.handle = handle;
mmap_arg.offset = 0;
mmap_arg.size = size;
if (drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg))
return NULL;
return (void *)(uintptr_t)mmap_arg.addr_ptr;
}
uint64_t gem_available_aperture_size(int fd)
{
struct drm_i915_gem_get_aperture aperture;
aperture.aper_size = 256*1024*1024;
do_ioctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture);
return aperture.aper_available_size;
}
uint64_t gem_aperture_size(int fd)
{
struct drm_i915_gem_get_aperture aperture;
aperture.aper_size = 256*1024*1024;
do_ioctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture);
return aperture.aper_size;
}
uint64_t gem_mappable_aperture_size(void)
{
struct pci_device *pci_dev;
int bar;
pci_dev = intel_get_pci_device();
if (intel_gen(pci_dev->device_id) < 3)
bar = 0;
else
bar = 2;
return pci_dev->regions[bar].size;
}
int gem_madvise(int fd, uint32_t handle, int state)
{
struct drm_i915_gem_madvise madv;
madv.handle = handle;
madv.madv = state;
madv.retained = 1;
do_ioctl(fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
return madv.retained;
}
uint32_t gem_context_create(int fd)
{
struct drm_i915_gem_context_create create;
int ret;
ret = drmIoctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
igt_require(ret == 0 || (errno != ENODEV && errno != EINVAL));
igt_assert(ret == 0);
return create.ctx_id;
}
void gem_sw_finish(int fd, uint32_t handle)
{
struct drm_i915_gem_sw_finish finish;
finish.handle = handle;
do_ioctl(fd, DRM_IOCTL_I915_GEM_SW_FINISH, &finish);
}
bool gem_bo_busy(int fd, uint32_t handle)
{
struct drm_i915_gem_busy busy;
busy.handle = handle;
do_ioctl(fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
return !!busy.busy;
}
/* prime */
int prime_handle_to_fd(int fd, uint32_t handle)
{
struct drm_prime_handle args;
args.handle = handle;
args.flags = DRM_CLOEXEC;
args.fd = -1;
do_ioctl(fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &args);
return args.fd;
}
uint32_t prime_fd_to_handle(int fd, int dma_buf_fd)
{
struct drm_prime_handle args;
args.fd = dma_buf_fd;
args.flags = 0;
args.handle = 0;
do_ioctl(fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &args);
return args.handle;
}
off_t prime_get_size(int dma_buf_fd)
{
off_t ret;
ret = lseek(dma_buf_fd, 0, SEEK_END);
igt_assert(ret >= 0 || errno == ESPIPE);
igt_require(ret >= 0);
return ret;
}
/* signal interrupt helpers */
static bool igt_only_list_subtests(void);
static unsigned int exit_handler_count;
static struct igt_helper_process signal_helper;
long long int sig_stat;
static void __attribute__((noreturn)) signal_helper_process(pid_t pid)
{
/* Interrupt the parent process at 500Hz, just to be annoying */
while (1) {
usleep(1000 * 1000 / 500);
if (kill(pid, SIGUSR1)) /* Parent has died, so must we. */
exit(0);
}
}
static void sig_handler(int i)
{
sig_stat++;
}
void igt_fork_signal_helper(void)
{
if (igt_only_list_subtests())
return;
signal(SIGUSR1, sig_handler);
igt_fork_helper(&signal_helper) {
signal_helper_process(getppid());
}
}
void igt_stop_signal_helper(void)
{
if (igt_only_list_subtests())
return;
igt_stop_helper(&signal_helper);
sig_stat = 0;
}
/* subtests helpers */
static bool list_subtests = false;
static char *run_single_subtest = NULL;
static const char *in_subtest = NULL;
static bool in_fixture = false;
static bool test_with_subtests = false;
static enum {
CONT = 0, SKIP, FAIL
} skip_subtests_henceforth = CONT;
/* fork support state */
pid_t *test_children;
int num_test_children;
int test_children_sz;
bool test_child;
bool __igt_fixture(void)
{
assert(!in_fixture);
if (igt_only_list_subtests())
return false;
if (skip_subtests_henceforth)
return false;
in_fixture = true;
return true;
}
void __igt_fixture_complete(void)
{
assert(in_fixture);
in_fixture = false;
}
void __igt_fixture_end(void)
{
assert(in_fixture);
in_fixture = false;
longjmp(igt_subtest_jmpbuf, 1);
}
bool igt_exit_called;
static void check_igt_exit(int sig)
{
/* When not killed by a signal check that igt_exit() has been properly
* called. */
assert(sig != 0 || igt_exit_called);
}
static void print_version(void)
{
struct utsname uts;
if (list_subtests)
return;
uname(&uts);
fprintf(stdout, "IGT-Version: %s-%s (%s) (%s: %s %s)\n", PACKAGE_VERSION,
IGT_GIT_SHA1, TARGET_CPU_PLATFORM,
uts.sysname, uts.release, uts.machine);
}
static void print_usage(const char *command_str, const char *help_str,
bool output_on_stderr)
{
FILE *f = output_on_stderr ? stderr : stdout;
fprintf(f, "Usage: %s [OPTIONS]\n"
" --list-subtests\n"
" --run-subtest <pattern>\n", command_str);
if (help_str)
fprintf(f, "%s\n", help_str);
}
int igt_subtest_init_parse_opts(int argc, char **argv,
const char *extra_short_opts,
struct option *extra_long_opts,
const char *help_str,
igt_opt_handler_t extra_opt_handler)
{
int c, option_index = 0;
static struct option long_options[] = {
{"list-subtests", 0, 0, 'l'},
{"run-subtest", 1, 0, 'r'},
{"help", 0, 0, 'h'},
};
const char *command_str;
char *short_opts;
struct option *combined_opts;
int extra_opt_count;
int all_opt_count;
int ret = 0;
test_with_subtests = true;
command_str = argv[0];
if (strrchr(command_str, '/'))
command_str = strrchr(command_str, '/') + 1;
/* First calculate space for all passed-in extra long options */
all_opt_count = 0;
while (extra_long_opts && extra_long_opts[all_opt_count].name)
all_opt_count++;
extra_opt_count = all_opt_count;
all_opt_count += ARRAY_SIZE(long_options);
combined_opts = malloc(all_opt_count * sizeof(*combined_opts));
memcpy(combined_opts, extra_long_opts,
extra_opt_count * sizeof(*combined_opts));
/* Copy the subtest long options (and the final NULL entry) */
memcpy(&combined_opts[extra_opt_count], long_options,
ARRAY_SIZE(long_options) * sizeof(*combined_opts));
ret = asprintf(&short_opts, "%sh",
extra_short_opts ? extra_short_opts : "");
assert(ret >= 0);
while ((c = getopt_long(argc, argv, short_opts, combined_opts,
&option_index)) != -1) {
switch(c) {
case 'l':
if (!run_single_subtest)
list_subtests = true;
break;
case 'r':
if (!list_subtests)
run_single_subtest = strdup(optarg);
break;
case 'h':
print_usage(command_str, help_str, false);
ret = -1;
goto out;
case '?':
if (opterr) {
print_usage(command_str, help_str, true);
ret = -2;
goto out;
}
/*
* Just ignore the error, since the unknown argument
* can be something the caller understands and will
* parse by doing a second getopt scanning.
*/
break;
default:
ret = extra_opt_handler(c, option_index);
if (ret)
goto out;
}
}
igt_install_exit_handler(check_igt_exit);
oom_adjust_for_doom();
out:
free(short_opts);
free(combined_opts);
print_version();
return ret;
}
enum igt_log_level igt_log_level = IGT_LOG_INFO;
static void common_init(void)
{
char *env = getenv("IGT_LOG_LEVEL");
if (!env)
return;
if (strcmp(env, "debug") == 0)
igt_log_level = IGT_LOG_DEBUG;
else if (strcmp(env, "info") == 0)
igt_log_level = IGT_LOG_INFO;
else if (strcmp(env, "warn") == 0)
igt_log_level = IGT_LOG_WARN;
else if (strcmp(env, "none") == 0)
igt_log_level = IGT_LOG_NONE;
}
void igt_subtest_init(int argc, char **argv)
{
int ret;
/* supress getopt errors about unknown options */
opterr = 0;
ret = igt_subtest_init_parse_opts(argc, argv, NULL, NULL, NULL, NULL);
if (ret < 0)
/* exit with no error for -h/--help */
exit(ret == -1 ? 0 : ret);
/* reset opt parsing */
optind = 1;
common_init();
}
void igt_simple_init(void)
{
print_version();
common_init();
}
/*
* Note: Testcases which use these helpers MUST NOT output anything to stdout
* outside of places protected by igt_run_subtest checks - the piglit
* runner adds every line to the subtest list.
*/
bool __igt_run_subtest(const char *subtest_name)
{
assert(!in_subtest);
assert(!in_fixture);
if (list_subtests) {
printf("%s\n", subtest_name);
return false;
}
if (run_single_subtest &&
strcmp(subtest_name, run_single_subtest) != 0)
return false;
if (skip_subtests_henceforth) {
printf("Subtest %s: %s\n", subtest_name,
skip_subtests_henceforth == SKIP ?
"SKIP" : "FAIL");
return false;
}
return (in_subtest = subtest_name);
}
const char *igt_subtest_name(void)
{
return in_subtest;
}
static bool igt_only_list_subtests(void)
{
return list_subtests;
}
static bool skipped_one = false;
static bool succeeded_one = false;
static bool failed_one = false;
static int igt_exitcode;
static void exit_subtest(const char *) __attribute__((noreturn));
static void exit_subtest(const char *result)
{
printf("Subtest %s: %s\n", in_subtest, result);
in_subtest = NULL;
longjmp(igt_subtest_jmpbuf, 1);
}
void igt_skip(const char *f, ...)
{
va_list args;
skipped_one = true;
assert(!test_child);
if (!igt_only_list_subtests()) {
va_start(args, f);
vprintf(f, args);
va_end(args);
}
if (in_subtest) {
exit_subtest("SKIP");
} else if (test_with_subtests) {
skip_subtests_henceforth = SKIP;
assert(in_fixture);
__igt_fixture_end();
} else {
exit(77);
}
}
void __igt_skip_check(const char *file, const int line,
const char *func, const char *check,
const char *f, ...)
{
va_list args;
int err = errno;
if (f) {
static char *buf;
/* igt_skip never returns, so try to not leak too badly. */
if (buf)
free(buf);
va_start(args, f);
vasprintf(&buf, f, args);
va_end(args);
igt_skip("Test requirement not met in function %s, file %s:%i:\n"
"Last errno: %i, %s\n"
"Test requirement: (%s)\n%s",
func, file, line, err, strerror(err), check, buf);
} else {
igt_skip("Test requirement not met in function %s, file %s:%i:\n"
"Last errno: %i, %s\n"
"Test requirement: (%s)\n",
func, file, line, err, strerror(err), check);
}
}
void igt_success(void)
{
succeeded_one = true;
if (in_subtest)
exit_subtest("SUCCESS");
}
void igt_fail(int exitcode)
{
assert(exitcode != 0 && exitcode != 77);
if (!failed_one)
igt_exitcode = exitcode;
failed_one = true;
/* Silent exit, parent will do the yelling. */
if (test_child)
exit(exitcode);
if (in_subtest)
exit_subtest("FAIL");
else {
assert(!test_with_subtests || in_fixture);
if (in_fixture) {
skip_subtests_henceforth = FAIL;
__igt_fixture_end();
}
exit(exitcode);
}
}
static bool run_under_gdb(void)
{
char buf[1024];
sprintf(buf, "/proc/%d/exe", getppid());
return (readlink (buf, buf, sizeof (buf)) != -1 &&
strncmp(basename(buf), "gdb", 3) == 0);
}
void __igt_fail_assert(int exitcode, const char *file,
const int line, const char *func, const char *assertion,
const char *f, ...)
{
va_list args;
int err = errno;
printf("Test assertion failure function %s, file %s:%i:\n"
"Last errno: %i, %s\n"
"Failed assertion: %s\n",
func, file, line, err, strerror(err), assertion);
if (f) {
va_start(args, f);
vprintf(f, args);
va_end(args);
}
if (run_under_gdb())
abort();
igt_fail(exitcode);
}
void igt_exit(void)
{
igt_exit_called = true;
if (igt_only_list_subtests())
exit(0);
if (!test_with_subtests)
exit(0);
/* Calling this without calling one of the above is a failure */
assert(skipped_one || succeeded_one || failed_one);
if (failed_one)
exit(igt_exitcode);
else if (succeeded_one)
exit(0);
else
exit(77);
}
static int helper_process_count;
static pid_t helper_process_pids[] =
{ -1, -1, -1, -1};
static void reset_helper_process_list(void)
{
for (int i = 0; i < ARRAY_SIZE(helper_process_pids); i++)
helper_process_pids[i] = -1;
helper_process_count = 0;
}
static void fork_helper_exit_handler(int sig)
{
for (int i = 0; i < ARRAY_SIZE(helper_process_pids); i++) {
pid_t pid = helper_process_pids[i];
int status, ret;
if (pid != -1) {
/* Someone forgot to fill up the array? */
assert(pid != 0);
ret = kill(pid, SIGQUIT);
assert(ret == 0);
while (waitpid(pid, &status, 0) == -1 &&
errno == EINTR)
;
helper_process_count--;
}
}
assert(helper_process_count == 0);
}
bool __igt_fork_helper(struct igt_helper_process *proc)
{
pid_t pid;
int id;
assert(!proc->running);
assert(helper_process_count < ARRAY_SIZE(helper_process_pids));
for (id = 0; helper_process_pids[id] != -1; id++)
;
igt_install_exit_handler(fork_helper_exit_handler);
switch (pid = fork()) {
case -1:
igt_assert(0);
case 0:
exit_handler_count = 0;
reset_helper_process_list();
oom_adjust_for_doom();
return true;
default:
proc->running = true;
proc->pid = pid;
proc->id = id;
helper_process_pids[id] = pid;
helper_process_count++;
return false;
}
}
/**
* igt_waitchildren - wait for all children forked with igt_fork
*
* The magic here is that exit codes from children will be correctly propagated
*/
void igt_stop_helper(struct igt_helper_process *proc)
{
int status, ret;
assert(proc->running);
ret = kill(proc->pid,
proc->use_SIGKILL ? SIGKILL : SIGQUIT);
assert(ret == 0);
while (waitpid(proc->pid, &status, 0) == -1 &&
errno == EINTR)
;
igt_assert(WIFSIGNALED(status) &&
WTERMSIG(status) == (proc->use_SIGKILL ? SIGKILL : SIGQUIT));
proc->running = false;
helper_process_pids[proc->id] = -1;
helper_process_count--;
}
void igt_wait_helper(struct igt_helper_process *proc)
{
int status;
assert(proc->running);
while (waitpid(proc->pid, &status, 0) == -1 &&
errno == EINTR)
;
igt_assert(WIFEXITED(status) && WEXITSTATUS(status) == 0);
proc->running = false;
helper_process_pids[proc->id] = -1;
helper_process_count--;
}
static void children_exit_handler(int sig)
{
int ret;
assert(!test_child);
for (int nc = 0; nc < num_test_children; nc++) {
int status = -1;
ret = kill(test_children[nc], SIGQUIT);
assert(ret == 0);
while (waitpid(test_children[nc], &status, 0) == -1 &&
errno == EINTR)
;
}
num_test_children = 0;
}
bool __igt_fork(void)
{
assert(!test_with_subtests || in_subtest);
assert(!test_child);
igt_install_exit_handler(children_exit_handler);
if (num_test_children >= test_children_sz) {
if (!test_children_sz)
test_children_sz = 4;
else
test_children_sz *= 2;
test_children = realloc(test_children,
sizeof(pid_t)*test_children_sz);
igt_assert(test_children);
}
switch (test_children[num_test_children++] = fork()) {
case -1:
igt_assert(0);
case 0:
test_child = true;
exit_handler_count = 0;
reset_helper_process_list();
oom_adjust_for_doom();
return true;
default:
return false;
}
}
/**
* igt_waitchildren - wait for all children forked with igt_fork
*
* The magic here is that exit codes from children will be correctly propagated
*/
void igt_waitchildren(void)
{
assert(!test_child);
for (int nc = 0; nc < num_test_children; nc++) {
int status = -1;
while (waitpid(test_children[nc], &status, 0) == -1 &&
errno == EINTR)
;
if (status != 0) {
if (WIFEXITED(status)) {
printf("child %i failed with exit status %i\n",
nc, WEXITSTATUS(status));
igt_fail(WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("child %i died with signal %i, %s\n",
nc, WTERMSIG(status),
strsignal(WTERMSIG(status)));
igt_fail(99);
} else {
printf("Unhandled failure in child %i\n", nc);
abort();
}
}
}
num_test_children = 0;
}
static bool env_set(const char *env_var, bool default_value)
{
char *val;
val = getenv(env_var);
if (!val)
return default_value;
return atoi(val) != 0;
}
bool igt_run_in_simulation(void)
{
static int simulation = -1;
if (simulation == -1)
simulation = env_set("INTEL_SIMULATION", false);
return simulation;
}
/**
* igt_skip_on_simulation - skip tests when INTEL_SIMULATION env war is set
*
* Skip the test when running on simulation (and that's relevant only when
* we're not in the mode where we list the subtests).
*
* This function is subtest aware (since it uses igt_skip) and so can be used to
* skip specific subtests or all subsequent subtests.
*/
void igt_skip_on_simulation(void)
{
if (igt_only_list_subtests())
return;
igt_require(!igt_run_in_simulation());
}
void igt_log(enum igt_log_level level, const char *format, ...)
{
va_list args;
assert(format);
if (igt_log_level > level)
return;
va_start(args, format);
if (level == IGT_LOG_WARN) {
fflush(stdout);
vfprintf(stderr, format, args);
} else
vprintf(format, args);
va_end(args);
}
bool drmtest_dump_aub(void)
{
static int dump_aub = -1;
if (dump_aub == -1)
dump_aub = env_set("IGT_DUMP_AUB", false);
return dump_aub;
}
/* other helpers */
void igt_exchange_int(void *array, unsigned i, unsigned j)
{
int *int_arr, tmp;
int_arr = array;
tmp = int_arr[i];
int_arr[i] = int_arr[j];
int_arr[j] = tmp;
}
void igt_permute_array(void *array, unsigned size,
void (*exchange_func)(void *array,
unsigned i,
unsigned j))
{
int i;
for (i = size - 1; i > 1; i--) {
/* yes, not perfectly uniform, who cares */
long l = random() % (i +1);
if (i != l)
exchange_func(array, i, l);
}
}
void igt_progress(const char *header, uint64_t i, uint64_t total)
{
int divider = 200;
if (!isatty(fileno(stderr)))
return;
if (i+1 >= total) {
fprintf(stderr, "\r%s100%%\n", header);
return;
}
if (total / 200 == 0)
divider = 1;
/* only bother updating about every 0.5% */
if (i % (total / divider) == 0 || i+1 >= total) {
fprintf(stderr, "\r%s%3llu%%", header,
(long long unsigned) i * 100 / total);
}
}
/* mappable aperture trasher helper */
drm_intel_bo **trash_bos;
int num_trash_bos;
void igt_init_aperture_trashers(drm_intel_bufmgr *bufmgr)
{
int i;
num_trash_bos = gem_mappable_aperture_size() / (1024*1024);
trash_bos = malloc(num_trash_bos * sizeof(drm_intel_bo *));
assert(trash_bos);
for (i = 0; i < num_trash_bos; i++)
trash_bos[i] = drm_intel_bo_alloc(bufmgr, "trash bo", 1024*1024, 4096);
}
void igt_trash_aperture(void)
{
int i;
uint8_t *gtt_ptr;
for (i = 0; i < num_trash_bos; i++) {
drm_intel_gem_bo_map_gtt(trash_bos[i]);
gtt_ptr = trash_bos[i]->virtual;
*gtt_ptr = 0;
drm_intel_gem_bo_unmap_gtt(trash_bos[i]);
}
}
void igt_cleanup_aperture_trashers(void)
{
int i;
for (i = 0; i < num_trash_bos; i++)
drm_intel_bo_unreference(trash_bos[i]);
free(trash_bos);
}
#define MAX_SIGNALS 32
#define MAX_EXIT_HANDLERS 5
static struct {
sighandler_t handler;
bool installed;
} orig_sig[MAX_SIGNALS];
static igt_exit_handler_t exit_handler_fn[MAX_EXIT_HANDLERS];
static bool exit_handler_disabled;
static sigset_t saved_sig_mask;
static const int handled_signals[] =
{ SIGINT, SIGHUP, SIGTERM, SIGQUIT, SIGPIPE, SIGABRT, SIGSEGV, SIGBUS };
static int install_sig_handler(int sig_num, sighandler_t handler)
{
orig_sig[sig_num].handler = signal(sig_num, handler);
if (orig_sig[sig_num].handler == SIG_ERR)
return -1;
orig_sig[sig_num].installed = true;
return 0;
}
static void restore_sig_handler(int sig_num)
{
/* Just restore the default so that we properly fall over. */
signal(sig_num, SIG_DFL);
}
static void restore_all_sig_handler(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(orig_sig); i++)
restore_sig_handler(i);
}
static void call_exit_handlers(int sig)
{
int i;
if (!exit_handler_count) {
return;
}
for (i = exit_handler_count - 1; i >= 0; i--)
exit_handler_fn[i](sig);
/* ensure we don't get called twice */
exit_handler_count = 0;
}
static void igt_atexit_handler(void)
{
restore_all_sig_handler();
if (!exit_handler_disabled)
call_exit_handlers(0);
}
static void fatal_sig_handler(int sig)
{
pid_t pid, tid;
restore_all_sig_handler();
/*
* exit_handler_disabled is always false here, since when we set it
* we also block signals.
*/
call_exit_handlers(sig);
/* Workaround cached PID and TID races on glibc and Bionic libc. */
pid = syscall(SYS_getpid);
tid = syscall(SYS_gettid);
syscall(SYS_tgkill, pid, tid, sig);
}
/*
* Set a handler that will be called either when the process calls exit() or
* returns from the main function, or one of the signals in 'handled_signals'
* is raised. MAX_EXIT_HANDLERS handlers can be installed, each of which will
* be called only once, even if a subsequent signal is raised. If the exit
* handlers are called due to a signal, the signal will be re-raised with the
* original signal disposition after all handlers returned.
*
* The handler will be passed the signal number if called due to a signal, or
* 0 otherwise.
*/
void igt_install_exit_handler(igt_exit_handler_t fn)
{
int i;
for (i = 0; i < exit_handler_count; i++)
if (exit_handler_fn[i] == fn)
return;
igt_assert(exit_handler_count < MAX_EXIT_HANDLERS);
exit_handler_fn[exit_handler_count] = fn;
exit_handler_count++;
if (exit_handler_count > 1)
return;
for (i = 0; i < ARRAY_SIZE(handled_signals); i++) {
if (install_sig_handler(handled_signals[i],
fatal_sig_handler))
goto err;
}
if (atexit(igt_atexit_handler))
goto err;
return;
err:
restore_all_sig_handler();
exit_handler_count--;
igt_assert_f(0, "failed to install the signal handler\n");
}
void igt_disable_exit_handler(void)
{
sigset_t set;
int i;
if (exit_handler_disabled)
return;
sigemptyset(&set);
for (i = 0; i < ARRAY_SIZE(handled_signals); i++)
sigaddset(&set, handled_signals[i]);
if (sigprocmask(SIG_BLOCK, &set, &saved_sig_mask)) {
perror("sigprocmask");
return;
}
exit_handler_disabled = true;
}
void igt_enable_exit_handler(void)
{
if (!exit_handler_disabled)
return;
if (sigprocmask(SIG_SETMASK, &saved_sig_mask, NULL)) {
perror("sigprocmask");
return;
}
exit_handler_disabled = false;
}
#define PREFAULT_DEBUGFS "/sys/module/i915/parameters/prefault_disable"
static void igt_prefault_control(bool enable)
{
const char *name = PREFAULT_DEBUGFS;
int fd;
char buf[2] = {'Y', 'N'};
int index;
fd = open(name, O_RDWR);
igt_require(fd >= 0);
if (enable)
index = 1;
else
index = 0;
igt_require(write(fd, &buf[index], 1) == 1);
close(fd);
}
static void enable_prefault_at_exit(int sig)
{
igt_enable_prefault();
}
void igt_disable_prefault(void)
{
igt_prefault_control(false);
igt_install_exit_handler(enable_prefault_at_exit);
}
void igt_enable_prefault(void)
{
igt_prefault_control(true);
}
void igt_system_suspend_autoresume(void)
{
int ret;
/* FIXME: Simulation doesn't like suspend/resume, and not even a lighter
* approach using /sys/power/pm_test to just test our driver's callbacks
* seems to fare better. We need to investigate what's going on. */
igt_skip_on_simulation();
ret = system("rtcwake -s 30 -m mem");
igt_assert(ret == 0);
}
void igt_drop_root(void)
{
igt_assert(getuid() == 0);
igt_assert(setgid(2) == 0);
igt_assert(setuid(2) == 0);
igt_assert(getgid() == 2);
igt_assert(getuid() == 2);
}
void igt_wait_for_keypress(void)
{
struct termios oldt, newt;
if (!isatty(STDIN_FILENO))
return;
tcgetattr ( STDIN_FILENO, &oldt );
newt = oldt;
newt.c_lflag &= ~( ICANON | ECHO );
tcsetattr ( STDIN_FILENO, TCSANOW, &newt );
getchar();
tcsetattr ( STDIN_FILENO, TCSANOW, &oldt );
}