ntel-gpu-tools/benchmarks/gem_latency.c
Chris Wilson e37a4c8092 benchmarks/gem_latency: Add time control
Allow the user to choose a time to run for, default 10s

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
2015-12-19 12:16:52 +00:00

435 lines
11 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
#define _GNU_SOURCE
#include <pthread.h>
#include "igt.h"
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include "drm.h"
static int done;
static int fd;
struct consumer {
pthread_t thread;
int wait;
igt_stats_t latency;
struct producer *producer;
};
struct producer {
pthread_t thread;
uint32_t ctx;
uint32_t nop_handle;
struct drm_i915_gem_exec_object2 exec[2];
struct drm_i915_gem_relocation_entry reloc[3];
pthread_mutex_t lock;
pthread_cond_t p_cond, c_cond;
uint32_t *last_timestamp;
int wait;
int complete;
igt_stats_t latency, throughput;
int nop;
int workload;
int nconsumers;
struct consumer *consumers;
};
#define LOCAL_EXEC_NO_RELOC (1<<11)
#define COPY_BLT_CMD (2<<29|0x53<<22|0x6)
#define BLT_WRITE_ALPHA (1<<21)
#define BLT_WRITE_RGB (1<<20)
#define WIDTH 128
#define HEIGHT 128
#define BCS_TIMESTAMP (0x22000 + 0x358)
static void setup_workload(struct producer *p, int gen, uint32_t scratch)
{
const int has_64bit_reloc = gen >= 8;
uint32_t *map;
int i = 0;
p->exec[0].handle = scratch;
p->exec[1].relocation_count = 3;
p->exec[1].relocs_ptr = (uintptr_t)p->reloc;
p->exec[1].handle = gem_create(fd, 4096);
if (gem_has_llc(fd))
map = gem_mmap__cpu(fd, p->exec[1].handle, 0, 4096, PROT_WRITE);
else
map = gem_mmap__gtt(fd, p->exec[1].handle, 4096, PROT_WRITE);
/* XY_SRC_COPY */
map[i++] = COPY_BLT_CMD | BLT_WRITE_ALPHA | BLT_WRITE_RGB;
if (has_64bit_reloc)
map[i-1] += 2;
map[i++] = 0xcc << 16 | 1 << 25 | 1 << 24 | (4*WIDTH);
map[i++] = 0;
map[i++] = HEIGHT << 16 | WIDTH;
p->reloc[0].offset = i * sizeof(uint32_t);
p->reloc[0].delta = 0;
p->reloc[0].target_handle = scratch;
p->reloc[0].read_domains = I915_GEM_DOMAIN_RENDER;
p->reloc[0].write_domain = I915_GEM_DOMAIN_RENDER;
p->reloc[0].presumed_offset = 0;
map[i++] = 0;
if (has_64bit_reloc)
map[i++] = 0;
map[i++] = 0;
map[i++] = 4096;
p->reloc[1].offset = i * sizeof(uint32_t);
p->reloc[1].delta = 0;
p->reloc[1].target_handle = scratch;
p->reloc[1].read_domains = I915_GEM_DOMAIN_RENDER;
p->reloc[1].write_domain = 0;
p->reloc[1].presumed_offset = 0;
map[i++] = 0;
if (has_64bit_reloc)
map[i++] = 0;
/* MI_FLUSH_DW */
map[i++] = 0x26 << 23 | 1;
if (has_64bit_reloc)
map[i-1]++;
map[i++] = 0;
map[i++] = 0;
if (has_64bit_reloc)
map[i++] = 0;
/* MI_STORE_REG_MEM */
map[i++] = 0x24 << 23 | 1;
if (has_64bit_reloc)
map[i-1]++;
map[i++] = BCS_TIMESTAMP;
p->reloc[2].offset = i * sizeof(uint32_t);
p->reloc[2].delta = 4000;
p->reloc[2].target_handle = p->exec[1].handle;
p->reloc[2].read_domains = I915_GEM_DOMAIN_INSTRUCTION;
p->reloc[2].write_domain = 0; /* We lie! */
p->reloc[2].presumed_offset = 0;
p->last_timestamp = &map[1000];
map[i++] = 4000;
if (has_64bit_reloc)
map[i++] = 0;
map[i++] = MI_BATCH_BUFFER_END;
}
static uint32_t setup_nop(void)
{
uint32_t buf = MI_BATCH_BUFFER_END;
uint32_t handle;
handle = gem_create(fd, 4096);
gem_write(fd, handle, 0, &buf, sizeof(buf));
return handle;
}
#define READ(x) *(volatile uint32_t *)((volatile char *)igt_global_mmio + x)
static void measure_latency(struct producer *p, igt_stats_t *stats)
{
gem_sync(fd, p->exec[1].handle);
igt_stats_push(stats, READ(BCS_TIMESTAMP) - *p->last_timestamp);
}
static void *producer(void *arg)
{
struct producer *p = arg;
struct drm_i915_gem_execbuffer2 nop, workload;
struct drm_i915_gem_exec_object2 exec;
int n;
memset(&exec, 0, sizeof(exec));
exec.handle = p->nop_handle;
memset(&nop, 0, sizeof(nop));
nop.buffers_ptr = (uintptr_t)&exec;
nop.buffer_count = 1;
nop.flags = I915_EXEC_BLT | LOCAL_EXEC_NO_RELOC;
nop.rsvd1 = p->ctx;
memset(&workload, 0, sizeof(workload));
workload.buffers_ptr = (uintptr_t)p->exec;
workload.buffer_count = 2;
workload.flags = I915_EXEC_BLT | LOCAL_EXEC_NO_RELOC;
workload.rsvd1 = p->ctx;
while (!done) {
uint32_t start = READ(BCS_TIMESTAMP);
int batches;
/* Submitting a set of empty batches has a two fold effect:
* - increases contention on execbuffer, i.e. measure dispatch
* latency with number of clients.
* - generates lots of spurious interrupts (if someone is
* waiting).
*/
batches = p->nop;
while (batches--)
gem_execbuf(fd, &nop);
/* Control the amount of work we do, similar to submitting
* empty buffers above, except this time we will load the
* GPU with a small amount of real work - so there is a small
* period between execution and interrupts.
*/
batches = p->workload;
while (batches--)
gem_execbuf(fd, &workload);
/* Wake all the associated clients to wait upon our batch */
pthread_mutex_lock(&p->lock);
p->wait = p->nconsumers;
for (n = 0; n < p->nconsumers; n++)
p->consumers[n].wait = 1;
pthread_cond_broadcast(&p->c_cond);
pthread_mutex_unlock(&p->lock);
/* Wait for this batch to finish and record how long we waited,
* and how long it took for the batch to be submitted
* (including the nop delays).
*/
measure_latency(p, &p->latency);
igt_stats_push(&p->throughput, *p->last_timestamp - start);
/* Tidy up all the extra threads before we submit again. */
pthread_mutex_lock(&p->lock);
while (p->wait)
pthread_cond_wait(&p->p_cond, &p->lock);
pthread_mutex_unlock(&p->lock);
p->complete++;
}
return NULL;
}
static void *consumer(void *arg)
{
struct consumer *c = arg;
struct producer *p = c->producer;
/* Sit around waiting for the "go" signal from the producer, then
* wait upon the batch to finish. This is to add extra waiters to
* the same request - increasing wakeup contention.
*/
while (!done) {
pthread_mutex_lock(&p->lock);
if (--p->wait == 0)
pthread_cond_signal(&p->p_cond);
while (!c->wait)
pthread_cond_wait(&p->c_cond, &p->lock);
c->wait = 0;
pthread_mutex_unlock(&p->lock);
measure_latency(p, &c->latency);
}
return NULL;
}
static double l_estimate(igt_stats_t *stats)
{
if (stats->n_values > 9)
return igt_stats_get_trimean(stats);
else if (stats->n_values > 5)
return igt_stats_get_median(stats);
else
return igt_stats_get_mean(stats);
}
#define CONTEXT 1
static int run(int seconds,
int nproducers,
int nconsumers,
int nop,
int workload,
unsigned flags)
{
struct producer *p;
igt_stats_t latency, throughput;
uint32_t scratch, batch;
int gen, n, m;
int complete;
int nrun;
#if 0
printf("producers=%d, consumers=%d, nop=%d, workload=%d, flags=%x\n",
nproducers, nconsumers, nop, workload, flags);
#endif
fd = drm_open_driver(DRIVER_INTEL);
gen = intel_gen(intel_get_drm_devid(fd));
if (gen < 6)
return 77; /* Needs BCS timestamp */
intel_register_access_init(intel_get_pci_device(), false);
batch = setup_nop();
scratch = gem_create(fd, 4*WIDTH*HEIGHT);
p = calloc(nproducers, sizeof(*p));
for (n = 0; n < nproducers; n++) {
p[n].nop_handle = batch;
setup_workload(&p[n], gen, scratch);
if (flags & CONTEXT)
p[n].ctx = gem_context_create(fd);
pthread_mutex_init(&p[n].lock, NULL);
pthread_cond_init(&p[n].p_cond, NULL);
pthread_cond_init(&p[n].c_cond, NULL);
igt_stats_init(&p[n].latency);
igt_stats_init(&p[n].throughput);
p[n].wait = nconsumers;
p[n].nop = nop;
p[n].workload = workload;
p[n].nconsumers = nconsumers;
p[n].consumers = calloc(nconsumers, sizeof(struct consumer));
for (m = 0; m < nconsumers; m++) {
p[n].consumers[m].producer = &p[n];
igt_stats_init(&p[n].consumers[m].latency);
pthread_create(&p[n].consumers[m].thread, NULL,
consumer, &p[n].consumers[m]);
}
}
for (n = 0; n < nproducers; n++)
pthread_create(&p[n].thread, NULL, producer, &p[n]);
sleep(seconds);
done = true;
nrun = complete = 0;
igt_stats_init_with_size(&throughput, nproducers);
igt_stats_init_with_size(&latency, nconsumers*nproducers);
for (n = 0; n < nproducers; n++) {
pthread_cancel(p[n].thread);
pthread_join(p[n].thread, NULL);
if (!p[n].complete)
continue;
nrun++;
complete += p[n].complete;
igt_stats_push_float(&latency, l_estimate(&p[n].latency));
igt_stats_push_float(&throughput, l_estimate(&p[n].throughput));
for (m = 0; m < nconsumers; m++) {
pthread_cancel(p[n].consumers[m].thread);
pthread_join(p[n].consumers[m].thread, NULL);
igt_stats_push_float(&latency, l_estimate(&p[n].consumers[m].latency));
}
}
printf("%d/%d: %7.3fus %7.3fus\n", complete, nrun,
80/1000.*l_estimate(&throughput),
80/1000.*l_estimate(&latency));
return 0;
}
int main(int argc, char **argv)
{
int time = 10;
int producers = 1;
int consumers = 0;
int nop = 0;
int workload = 1;
unsigned flags = 0;
int c;
while ((c = getopt(argc, argv, "p:c:n:w:t:s")) != -1) {
switch (c) {
case 'p':
/* How many threads generate work? */
producers = atoi(optarg);
if (producers < 1)
producers = 1;
break;
case 'c':
/* How many threads wait upon each piece of work? */
consumers = atoi(optarg);
if (consumers < 0)
consumers = 0;
break;
case 'n':
/* Extra dispatch contention + interrupts */
nop = atoi(optarg);
if (nop < 0)
nop = 0;
break;
case 'w':
/* Control the amount of real work done */
workload = atoi(optarg);
if (workload < 1)
workload = 1;
break;
case 't':
/* How long to run the benchmark for (seconds) */
time = atoi(optarg);
if (time < 1)
time = 1;
break;
case 's':
/* Assign each producer to its own context, adding
* context switching into the mix (e.g. execlists
* can amalgamate requests from one context, so
* having each producer submit in different contexts
* should force more execlist interrupts).
*/
flags |= CONTEXT;
break;
default:
break;
}
}
return run(time, producers, consumers, nop, workload, flags);
}