ntel-gpu-tools/tools/intel_bios_reader.c
Jani Nikula 9764247dc5 intel_bios_reader: add dumping of i2c element in mipi sequence
Due to the clever way the whole sequence block is specified without
forward compatibility, it's not possible to dump most blocks without
this.

Signed-off-by: Jani Nikula <jani.nikula@intel.com>
2015-12-22 14:21:22 +02:00

1328 lines
37 KiB
C

/*
* Copyright © 2006 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include "intel_bios.h"
#include "intel_io.h"
#include "intel_chipset.h"
#include "drmtest.h"
static uint32_t devid = -1;
/* no bother to include "edid.h" */
#define _H_ACTIVE(x) (x[2] + ((x[4] & 0xF0) << 4))
#define _H_SYNC_OFF(x) (x[8] + ((x[11] & 0xC0) << 2))
#define _H_SYNC_WIDTH(x) (x[9] + ((x[11] & 0x30) << 4))
#define _H_BLANK(x) (x[3] + ((x[4] & 0x0F) << 8))
#define _V_ACTIVE(x) (x[5] + ((x[7] & 0xF0) << 4))
#define _V_SYNC_OFF(x) ((x[10] >> 4) + ((x[11] & 0x0C) << 2))
#define _V_SYNC_WIDTH(x) ((x[10] & 0x0F) + ((x[11] & 0x03) << 4))
#define _V_BLANK(x) (x[6] + ((x[7] & 0x0F) << 8))
#define _PIXEL_CLOCK(x) (x[0] + (x[1] << 8)) * 10000
uint8_t *VBIOS;
#define INTEL_BIOS_8(_addr) (VBIOS[_addr])
#define INTEL_BIOS_16(_addr) (VBIOS[_addr] | \
(VBIOS[_addr + 1] << 8))
#define INTEL_BIOS_32(_addr) (VBIOS[_addr] | \
(VBIOS[_addr + 1] << 8) | \
(VBIOS[_addr + 2] << 16) | \
(VBIOS[_addr + 3] << 24))
#define YESNO(val) ((val) ? "yes" : "no")
struct bdb_block {
uint8_t id;
uint16_t size;
void *data;
};
struct bdb_header *bdb;
struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
static int tv_present;
static int lvds_present;
static int panel_type;
static struct bdb_block *find_section(int section_id, int length)
{
struct bdb_block *block;
unsigned char *base = (unsigned char *)bdb;
int idx = 0;
uint16_t total, current_size;
unsigned char current_id;
/* skip to first section */
idx += bdb->header_size;
total = bdb->bdb_size;
if (total > length)
total = length;
block = malloc(sizeof(*block));
if (!block) {
fprintf(stderr, "out of memory\n");
exit(-1);
}
/* walk the sections looking for section_id */
while (idx + 3 < total) {
current_id = *(base + idx);
current_size = *(uint16_t *)(base + idx + 1);
if (idx + current_size > total)
return NULL;
if (current_id == section_id) {
block->id = current_id;
block->size = current_size;
block->data = base + idx + 3;
return block;
}
idx += current_size + 3;
}
free(block);
return NULL;
}
static void dump_general_features(const struct bdb_block *block)
{
struct bdb_general_features *features = block->data;
printf("\tPanel fitting: ");
switch (features->panel_fitting) {
case 0:
printf("disabled\n");
break;
case 1:
printf("text only\n");
break;
case 2:
printf("graphics only\n");
break;
case 3:
printf("text & graphics\n");
break;
}
printf("\tFlexaim: %s\n", YESNO(features->flexaim));
printf("\tMessage: %s\n", YESNO(features->msg_enable));
printf("\tClear screen: %d\n", features->clear_screen);
printf("\tDVO color flip required: %s\n", YESNO(features->color_flip));
printf("\tExternal VBT: %s\n", YESNO(features->download_ext_vbt));
printf("\tEnable SSC: %s\n", YESNO(features->enable_ssc));
if (features->enable_ssc) {
if (IS_VALLEYVIEW(devid) || IS_CHERRYVIEW(devid) ||
IS_BROXTON(devid))
printf("\tSSC frequency: 100 MHz\n");
else if (HAS_PCH_SPLIT(devid))
printf("\tSSC frequency: %s\n", features->ssc_freq ?
"100 MHz" : "120 MHz");
else
printf("\tSSC frequency: %s\n", features->ssc_freq ?
"100 MHz (66 MHz on 855)" : "96 MHz (48 MHz on 855)");
}
printf("\tLFP on override: %s\n",
YESNO(features->enable_lfp_on_override));
printf("\tDisable SSC on clone: %s\n",
YESNO(features->disable_ssc_ddt));
printf("\tDisable smooth vision: %s\n",
YESNO(features->disable_smooth_vision));
printf("\tSingle DVI for CRT/DVI: %s\n", YESNO(features->single_dvi));
printf("\tLegacy monitor detect: %s\n",
YESNO(features->legacy_monitor_detect));
printf("\tIntegrated CRT: %s\n", YESNO(features->int_crt_support));
printf("\tIntegrated TV: %s\n", YESNO(features->int_tv_support));
tv_present = 1; /* should be based on whether TV DAC exists */
lvds_present = 1; /* should be based on IS_MOBILE() */
}
static void dump_backlight_info(const struct bdb_block *block)
{
struct bdb_lvds_backlight *backlight = block->data;
struct blc_struct *blc;
if (sizeof(struct blc_struct) != backlight->blcstruct_size) {
printf("\tBacklight struct sizes don't match (expected %zu, got %u), skipping\n",
sizeof(struct blc_struct), backlight->blcstruct_size);
return;
}
blc = &backlight->panels[panel_type];
printf("\tInverter type: %d\n", blc->inverter_type);
printf("\t polarity: %d\n", blc->inverter_polarity);
printf("\t GPIO pins: %d\n", blc->gpio_pins);
printf("\t GMBUS speed: %d\n", blc->gmbus_speed);
printf("\t PWM freq: %d\n", blc->pwm_freq);
printf("\tMinimum brightness: %d\n", blc->min_brightness);
printf("\tI2C slave addr: 0x%02x\n", blc->i2c_slave_addr);
printf("\tI2C command: 0x%02x\n", blc->i2c_cmd);
}
static const struct {
unsigned short type;
const char *name;
} child_device_types[] = {
{ DEVICE_TYPE_NONE, "none" },
{ DEVICE_TYPE_CRT, "CRT" },
{ DEVICE_TYPE_TV, "TV" },
{ DEVICE_TYPE_EFP, "EFP" },
{ DEVICE_TYPE_LFP, "LFP" },
{ DEVICE_TYPE_CRT_DPMS, "CRT" },
{ DEVICE_TYPE_CRT_DPMS_HOTPLUG, "CRT" },
{ DEVICE_TYPE_TV_COMPOSITE, "TV composite" },
{ DEVICE_TYPE_TV_MACROVISION, "TV" },
{ DEVICE_TYPE_TV_RF_COMPOSITE, "TV" },
{ DEVICE_TYPE_TV_SVIDEO_COMPOSITE, "TV S-Video" },
{ DEVICE_TYPE_TV_SCART, "TV SCART" },
{ DEVICE_TYPE_TV_CODEC_HOTPLUG_PWR, "TV" },
{ DEVICE_TYPE_EFP_HOTPLUG_PWR, "EFP" },
{ DEVICE_TYPE_EFP_DVI_HOTPLUG_PWR, "DVI" },
{ DEVICE_TYPE_EFP_DVI_I, "DVI-I" },
{ DEVICE_TYPE_EFP_DVI_D_DUAL, "DL-DVI-D" },
{ DEVICE_TYPE_EFP_DVI_D_HDCP, "DVI-D" },
{ DEVICE_TYPE_OPENLDI_HOTPLUG_PWR, "OpenLDI" },
{ DEVICE_TYPE_OPENLDI_DUALPIX, "OpenLDI" },
{ DEVICE_TYPE_LFP_PANELLINK, "PanelLink" },
{ DEVICE_TYPE_LFP_CMOS_PWR, "CMOS LFP" },
{ DEVICE_TYPE_LFP_LVDS_PWR, "LVDS" },
{ DEVICE_TYPE_LFP_LVDS_DUAL, "LVDS" },
{ DEVICE_TYPE_LFP_LVDS_DUAL_HDCP, "LVDS" },
{ DEVICE_TYPE_INT_LFP, "LFP" },
{ DEVICE_TYPE_INT_TV, "TV" },
{ DEVICE_TYPE_DP, "DisplayPort" },
{ DEVICE_TYPE_DP_HDMI_DVI, "DisplayPort/HDMI/DVI" },
{ DEVICE_TYPE_DP_DVI, "DisplayPort/DVI" },
{ DEVICE_TYPE_HDMI_DVI, "HDMI/DVI" },
{ DEVICE_TYPE_DVI, "DVI" },
{ DEVICE_TYPE_eDP, "eDP" },
{ DEVICE_TYPE_MIPI, "MIPI" },
};
static const int num_child_device_types =
sizeof(child_device_types) / sizeof(child_device_types[0]);
static const char *child_device_type(unsigned short type)
{
int i;
for (i = 0; i < num_child_device_types; i++)
if (child_device_types[i].type == type)
return child_device_types[i].name;
return "unknown";
}
static const char * const child_device_type_bits[] = {
[DEVICE_TYPE_CLASS_EXTENSION] = "Class extension",
[DEVICE_TYPE_POWER_MANAGEMENT] = "Power management",
[DEVICE_TYPE_HOTPLUG_SIGNALING] = "Hotplug signaling",
[DEVICE_TYPE_INTERNAL_CONNECTOR] = "Internal connector",
[DEVICE_TYPE_NOT_HDMI_OUTPUT] = "HDMI output", /* decoded as inverse */
[DEVICE_TYPE_MIPI_OUTPUT] = "MIPI output",
[DEVICE_TYPE_COMPOSITE_OUTPUT] = "Composite output",
[DEVICE_TYPE_DIAL_CHANNEL] = "Dual channel",
[DEVICE_TYPE_CONTENT_PROTECTION] = "Content protection",
[DEVICE_TYPE_HIGH_SPEED_LINK] = "High speel link",
[DEVICE_TYPE_LVDS_SIGNALING] = "LVDS signaling",
[DEVICE_TYPE_TMDS_DVI_SIGNALING] = "TMDS/DVI signaling",
[DEVICE_TYPE_VIDEO_SIGNALING] = "Video signaling",
[DEVICE_TYPE_DISPLAYPORT_OUTPUT] = "DisplayPort output",
[DEVICE_TYPE_DIGITAL_OUTPUT] = "Digital output",
[DEVICE_TYPE_ANALOG_OUTPUT] = "Analog output",
};
static void dump_child_device_type_bits(uint16_t type)
{
int bit;
type ^= 1 << DEVICE_TYPE_NOT_HDMI_OUTPUT;
for (bit = 15; bit >= 0; bit--) {
if (type & (1 << bit))
printf("\t\t\t%s\n", child_device_type_bits[bit]);
}
}
static const struct {
unsigned char handle;
const char *name;
} child_device_handles[] = {
{ DEVICE_HANDLE_CRT, "CRT" },
{ DEVICE_HANDLE_EFP1, "EFP 1 (HDMI/DVI/DP)" },
{ DEVICE_HANDLE_EFP2, "EFP 2 (HDMI/DVI/DP)" },
{ DEVICE_HANDLE_EFP3, "EFP 3 (HDMI/DVI/DP)" },
{ DEVICE_HANDLE_EFP4, "EFP 4 (HDMI/DVI/DP)" },
{ DEVICE_HANDLE_LPF1, "LFP 1 (eDP)" },
{ DEVICE_HANDLE_LFP2, "LFP 2 (eDP)" },
};
static const int num_child_device_handles =
sizeof(child_device_handles) / sizeof(child_device_handles[0]);
static const char *child_device_handle(unsigned char handle)
{
int i;
for (i = 0; i < num_child_device_handles; i++)
if (child_device_handles[i].handle == handle)
return child_device_handles[i].name;
return "unknown";
}
static const struct {
unsigned short type;
const char *name;
} efp_ports[] = {
{ DEVICE_PORT_NONE, "N/A" },
{ DEVICE_PORT_HDMIB, "HDMI-B" },
{ DEVICE_PORT_HDMIC, "HDMI-C" },
{ DEVICE_PORT_HDMID, "HDMI-D" },
{ DEVICE_PORT_DPB, "DP-B" },
{ DEVICE_PORT_DPC, "DP-C" },
{ DEVICE_PORT_DPD, "DP-D" },
};
static const int num_efp_ports = sizeof(efp_ports) / sizeof(efp_ports[0]);
static const char *efp_port(uint8_t type)
{
int i;
for (i = 0; i < num_efp_ports; i++)
if (efp_ports[i].type == type)
return efp_ports[i].name;
return "unknown";
}
static const struct {
unsigned short type;
const char *name;
} efp_conn_info[] = {
{ DEVICE_INFO_NONE, "N/A" },
{ DEVICE_INFO_HDMI_CERT, "HDMI certified" },
{ DEVICE_INFO_DP, "DisplayPort" },
{ DEVICE_INFO_DVI, "DVI" },
};
static const int num_efp_conn_info = sizeof(efp_conn_info) / sizeof(efp_conn_info[0]);
static const char *efp_conn(uint8_t type)
{
int i;
for (i = 0; i < num_efp_conn_info; i++)
if (efp_conn_info[i].type == type)
return efp_conn_info[i].name;
return "unknown";
}
static void dump_child_device(struct child_device_config *child)
{
char child_id[11];
if (!child->device_type)
return;
if (bdb->version < 152) {
strncpy(child_id, (char *)child->device_id, 10);
child_id[10] = 0;
printf("\tChild device info:\n");
printf("\t\tDevice type: %04x (%s)\n", child->device_type,
child_device_type(child->device_type));
printf("\t\tSignature: %s\n", child_id);
printf("\t\tAIM offset: %d\n", child->addin_offset);
printf("\t\tDVO port: 0x%02x\n", child->dvo_port);
} else { /* 152+ have EFP blocks here */
struct efp_child_device_config *efp =
(struct efp_child_device_config *)child;
printf("\tEFP device info:\n");
printf("\t\tDevice handle: 0x%04x (%s)\n", efp->handle,
child_device_handle(efp->handle));
printf("\t\tDevice type: 0x%04x (%s)\n", efp->device_type,
child_device_type(efp->device_type));
dump_child_device_type_bits(efp->device_type);
printf("\t\tPort: 0x%02x (%s)\n", efp->port,
efp_port(efp->port));
printf("\t\tDDC pin: 0x%02x\n", efp->ddc_pin);
printf("\t\tDock port: 0x%02x (%s)\n", efp->docked_port,
efp_port(efp->docked_port));
printf("\t\tHDMI compatible? %s\n", efp->hdmi_compat ? "Yes" : "No");
printf("\t\tInfo: %s\n", efp_conn(efp->conn_info));
printf("\t\tAux channel: 0x%02x\n", efp->aux_chan);
printf("\t\tDongle detect: 0x%02x\n", efp->dongle_detect);
}
}
static void dump_general_definitions(const struct bdb_block *block)
{
struct bdb_general_definitions *defs = block->data;
int i;
int child_device_num;
printf("\tCRT DDC GMBUS addr: 0x%02x\n", defs->crt_ddc_gmbus_pin);
printf("\tUse ACPI DPMS CRT power states: %s\n",
YESNO(defs->dpms_acpi));
printf("\tSkip CRT detect at boot: %s\n",
YESNO(defs->skip_boot_crt_detect));
printf("\tUse DPMS on AIM devices: %s\n", YESNO(defs->dpms_aim));
printf("\tBoot display type: 0x%02x%02x\n", defs->boot_display[1],
defs->boot_display[0]);
printf("\tTV data block present: %s\n", YESNO(tv_present));
printf("\tChild device size: %d\n", defs->child_dev_size);
child_device_num = (block->size - sizeof(*defs)) /
defs->child_dev_size;
for (i = 0; i < child_device_num; i++)
dump_child_device((void*)&defs->devices[i * defs->child_dev_size]);
}
static void dump_child_devices(const struct bdb_block *block)
{
struct bdb_child_devices *child_devs = block->data;
struct child_device_config *child;
int i;
for (i = 0; i < DEVICE_CHILD_SIZE; i++) {
child = &child_devs->children[i];
/* Skip nonexistent children */
if (!child->device_type)
continue;
printf("\tChild device %d\n", i);
printf("\t\tType: 0x%04x (%s)\n", child->device_type,
child_device_type(child->device_type));
printf("\t\tDVO port: 0x%02x\n", child->dvo_port);
printf("\t\tI2C pin: 0x%02x\n", child->i2c_pin);
printf("\t\tSlave addr: 0x%02x\n", child->slave_addr);
printf("\t\tDDC pin: 0x%02x\n", child->ddc_pin);
printf("\t\tDVO config: 0x%02x\n", child->dvo_cfg);
printf("\t\tDVO wiring: 0x%02x\n", child->dvo_wiring);
}
}
static void dump_lvds_options(const struct bdb_block *block)
{
struct bdb_lvds_options *options = block->data;
panel_type = options->panel_type;
printf("\tPanel type: %d\n", panel_type);
printf("\tLVDS EDID available: %s\n", YESNO(options->lvds_edid));
printf("\tPixel dither: %s\n", YESNO(options->pixel_dither));
printf("\tPFIT auto ratio: %s\n", YESNO(options->pfit_ratio_auto));
printf("\tPFIT enhanced graphics mode: %s\n",
YESNO(options->pfit_gfx_mode_enhanced));
printf("\tPFIT enhanced text mode: %s\n",
YESNO(options->pfit_text_mode_enhanced));
printf("\tPFIT mode: %d\n", options->pfit_mode);
}
static void dump_lvds_ptr_data(const struct bdb_block *block)
{
struct bdb_lvds_lfp_data_ptrs *ptrs = block->data;
printf("\tNumber of entries: %d\n", ptrs->lvds_entries);
/* save for use by dump_lvds_data() */
lvds_lfp_data_ptrs = ptrs;
}
static void dump_lvds_data(const struct bdb_block *block)
{
struct bdb_lvds_lfp_data *lvds_data = block->data;
struct bdb_lvds_lfp_data_ptrs *ptrs = lvds_lfp_data_ptrs;
int num_entries;
int i;
int hdisplay, hsyncstart, hsyncend, htotal;
int vdisplay, vsyncstart, vsyncend, vtotal;
float clock;
int lfp_data_size, dvo_offset;
if (!ptrs) {
printf("No LVDS ptr block\n");
return;
}
lfp_data_size =
ptrs->ptr[1].fp_timing_offset - ptrs->ptr[0].fp_timing_offset;
dvo_offset =
ptrs->ptr[0].dvo_timing_offset - ptrs->ptr[0].fp_timing_offset;
num_entries = block->size / lfp_data_size;
printf(" Number of entries: %d (preferred block marked with '*')\n",
num_entries);
for (i = 0; i < num_entries; i++) {
uint8_t *lfp_data_ptr =
(uint8_t *) lvds_data->data + lfp_data_size * i;
uint8_t *timing_data = lfp_data_ptr + dvo_offset;
struct bdb_lvds_lfp_data_entry *lfp_data =
(struct bdb_lvds_lfp_data_entry *)lfp_data_ptr;
char marker;
if (i == panel_type)
marker = '*';
else
marker = ' ';
hdisplay = _H_ACTIVE(timing_data);
hsyncstart = hdisplay + _H_SYNC_OFF(timing_data);
hsyncend = hsyncstart + _H_SYNC_WIDTH(timing_data);
htotal = hdisplay + _H_BLANK(timing_data);
vdisplay = _V_ACTIVE(timing_data);
vsyncstart = vdisplay + _V_SYNC_OFF(timing_data);
vsyncend = vsyncstart + _V_SYNC_WIDTH(timing_data);
vtotal = vdisplay + _V_BLANK(timing_data);
clock = _PIXEL_CLOCK(timing_data) / 1000;
printf("%c\tpanel type %02i: %dx%d clock %d\n", marker,
i, lfp_data->fp_timing.x_res, lfp_data->fp_timing.y_res,
_PIXEL_CLOCK(timing_data));
printf("\t\tinfo:\n");
printf("\t\t LVDS: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.lvds_reg_val);
printf("\t\t PP_ON_DELAYS: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.pp_on_reg_val);
printf("\t\t PP_OFF_DELAYS: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.pp_off_reg_val);
printf("\t\t PP_DIVISOR: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.pp_cycle_reg_val);
printf("\t\t PFIT: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.pfit_reg_val);
printf("\t\ttimings: %d %d %d %d %d %d %d %d %.2f (%s)\n",
hdisplay, hsyncstart, hsyncend, htotal,
vdisplay, vsyncstart, vsyncend, vtotal, clock,
(hsyncend > htotal || vsyncend > vtotal) ?
"BAD!" : "good");
}
}
static void dump_driver_feature(const struct bdb_block *block)
{
struct bdb_driver_feature *feature = block->data;
printf("\tBoot Device Algorithm: %s\n", feature->boot_dev_algorithm ?
"driver default" : "os default");
printf("\tBlock display switching when DVD active: %s\n",
YESNO(feature->block_display_switch));
printf("\tAllow display switching when in Full Screen DOS: %s\n",
YESNO(feature->allow_display_switch));
printf("\tHot Plug DVO: %s\n", YESNO(feature->hotplug_dvo));
printf("\tDual View Zoom: %s\n", YESNO(feature->dual_view_zoom));
printf("\tDriver INT 15h hook: %s\n", YESNO(feature->int15h_hook));
printf("\tEnable Sprite in Clone Mode: %s\n",
YESNO(feature->sprite_in_clone));
printf("\tUse 00000110h ID for Primary LFP: %s\n",
YESNO(feature->primary_lfp_id));
printf("\tBoot Mode X: %u\n", feature->boot_mode_x);
printf("\tBoot Mode Y: %u\n", feature->boot_mode_y);
printf("\tBoot Mode Bpp: %u\n", feature->boot_mode_bpp);
printf("\tBoot Mode Refresh: %u\n", feature->boot_mode_refresh);
printf("\tEnable LFP as primary: %s\n",
YESNO(feature->enable_lfp_primary));
printf("\tSelective Mode Pruning: %s\n",
YESNO(feature->selective_mode_pruning));
printf("\tDual-Frequency Graphics Technology: %s\n",
YESNO(feature->dual_frequency));
printf("\tDefault Render Clock Frequency: %s\n",
feature->render_clock_freq ? "low" : "high");
printf("\tNT 4.0 Dual Display Clone Support: %s\n",
YESNO(feature->nt_clone_support));
printf("\tDefault Power Scheme user interface: %s\n",
feature->power_scheme_ui ? "3rd party" : "CUI");
printf
("\tSprite Display Assignment when Overlay is Active in Clone Mode: %s\n",
feature->sprite_display_assign ? "primary" : "secondary");
printf("\tDisplay Maintain Aspect Scaling via CUI: %s\n",
YESNO(feature->cui_aspect_scaling));
printf("\tPreserve Aspect Ratio: %s\n",
YESNO(feature->preserve_aspect_ratio));
printf("\tEnable SDVO device power down: %s\n",
YESNO(feature->sdvo_device_power_down));
printf("\tCRT hotplug: %s\n", YESNO(feature->crt_hotplug));
printf("\tLVDS config: ");
switch (feature->lvds_config) {
case BDB_DRIVER_NO_LVDS:
printf("No LVDS\n");
break;
case BDB_DRIVER_INT_LVDS:
printf("Integrated LVDS\n");
break;
case BDB_DRIVER_SDVO_LVDS:
printf("SDVO LVDS\n");
break;
case BDB_DRIVER_EDP:
printf("Embedded DisplayPort\n");
break;
}
printf("\tDefine Display statically: %s\n",
YESNO(feature->static_display));
printf("\tLegacy CRT max X: %d\n", feature->legacy_crt_max_x);
printf("\tLegacy CRT max Y: %d\n", feature->legacy_crt_max_y);
printf("\tLegacy CRT max refresh: %d\n",
feature->legacy_crt_max_refresh);
}
static void dump_edp(const struct bdb_block *block)
{
struct bdb_edp *edp = block->data;
int bpp, msa;
int i;
for (i = 0; i < 16; i++) {
printf("\tPanel %d%s\n", i, panel_type == i ? " *" : "");
printf("\t\tPower Sequence: T3 %d T7 %d T9 %d T10 %d T12 %d\n",
edp->power_seqs[i].t3,
edp->power_seqs[i].t7,
edp->power_seqs[i].t9,
edp->power_seqs[i].t10,
edp->power_seqs[i].t12);
bpp = (edp->color_depth >> (i * 2)) & 3;
printf("\t\tPanel color depth: ");
switch (bpp) {
case EDP_18BPP:
printf("18 bpp\n");
break;
case EDP_24BPP:
printf("24 bpp\n");
break;
case EDP_30BPP:
printf("30 bpp\n");
break;
default:
printf("(unknown value %d)\n", bpp);
break;
}
msa = (edp->sdrrs_msa_timing_delay >> (i * 2)) & 3;
printf("\t\teDP sDRRS MSA Delay: Lane %d\n", msa + 1);
printf("\t\tLink params:\n");
printf("\t\t\trate: ");
if (edp->link_params[i].rate == EDP_RATE_1_62)
printf("1.62G\n");
else if (edp->link_params[i].rate == EDP_RATE_2_7)
printf("2.7G\n");
printf("\t\t\tlanes: ");
switch (edp->link_params[i].lanes) {
case EDP_LANE_1:
printf("x1 mode\n");
break;
case EDP_LANE_2:
printf("x2 mode\n");
break;
case EDP_LANE_4:
printf("x4 mode\n");
break;
default:
printf("(unknown value %d)\n",
edp->link_params[i].lanes);
break;
}
printf("\t\t\tpre-emphasis: ");
switch (edp->link_params[i].preemphasis) {
case EDP_PREEMPHASIS_NONE:
printf("none\n");
break;
case EDP_PREEMPHASIS_3_5dB:
printf("3.5dB\n");
break;
case EDP_PREEMPHASIS_6dB:
printf("6dB\n");
break;
case EDP_PREEMPHASIS_9_5dB:
printf("9.5dB\n");
break;
default:
printf("(unknown value %d)\n",
edp->link_params[i].preemphasis);
break;
}
printf("\t\t\tvswing: ");
switch (edp->link_params[i].vswing) {
case EDP_VSWING_0_4V:
printf("0.4V\n");
break;
case EDP_VSWING_0_6V:
printf("0.6V\n");
break;
case EDP_VSWING_0_8V:
printf("0.8V\n");
break;
case EDP_VSWING_1_2V:
printf("1.2V\n");
break;
default:
printf("(unknown value %d)\n",
edp->link_params[i].vswing);
break;
}
}
}
static void
print_detail_timing_data(struct lvds_dvo_timing2 *dvo_timing)
{
int display, sync_start, sync_end, total;
display = (dvo_timing->hactive_hi << 8) | dvo_timing->hactive_lo;
sync_start = display +
((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
sync_end = sync_start + dvo_timing->hsync_pulse_width;
total = display +
((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
printf("\thdisplay: %d\n", display);
printf("\thsync [%d, %d] %s\n", sync_start, sync_end,
dvo_timing->hsync_positive ? "+sync" : "-sync");
printf("\thtotal: %d\n", total);
display = (dvo_timing->vactive_hi << 8) | dvo_timing->vactive_lo;
sync_start = display + dvo_timing->vsync_off;
sync_end = sync_start + dvo_timing->vsync_pulse_width;
total = display +
((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
printf("\tvdisplay: %d\n", display);
printf("\tvsync [%d, %d] %s\n", sync_start, sync_end,
dvo_timing->vsync_positive ? "+sync" : "-sync");
printf("\tvtotal: %d\n", total);
printf("\tclock: %d\n", dvo_timing->clock * 10);
}
static void dump_sdvo_panel_dtds(const struct bdb_block *block)
{
struct lvds_dvo_timing2 *dvo_timing = block->data;
int n, count;
count = block->size / sizeof(struct lvds_dvo_timing2);
for (n = 0; n < count; n++) {
printf("%d:\n", n);
print_detail_timing_data(dvo_timing++);
}
}
static void dump_sdvo_lvds_options(const struct bdb_block *block)
{
struct bdb_sdvo_lvds_options *options = block->data;
printf("\tbacklight: %d\n", options->panel_backlight);
printf("\th40 type: %d\n", options->h40_set_panel_type);
printf("\ttype: %d\n", options->panel_type);
printf("\tssc_clk_freq: %d\n", options->ssc_clk_freq);
printf("\tals_low_trip: %d\n", options->als_low_trip);
printf("\tals_high_trip: %d\n", options->als_high_trip);
/*
u8 sclalarcoeff_tab_row_num;
u8 sclalarcoeff_tab_row_size;
u8 coefficient[8];
*/
printf("\tmisc[0]: %x\n", options->panel_misc_bits_1);
printf("\tmisc[1]: %x\n", options->panel_misc_bits_2);
printf("\tmisc[2]: %x\n", options->panel_misc_bits_3);
printf("\tmisc[3]: %x\n", options->panel_misc_bits_4);
}
static void dump_mipi_config(const struct bdb_block *block)
{
struct bdb_mipi_config *start = block->data;
struct mipi_config *config;
struct mipi_pps_data *pps;
config = &start->config[panel_type];
pps = &start->pps[panel_type];
printf("\tGeneral Param\n");
printf("\t\t BTA disable: %s\n", config->bta ? "Disabled" : "Enabled");
printf("\t\t Video Mode Color Format: ");
if (config->videomode_color_format == 0)
printf("Not supported\n");
else if (config->videomode_color_format == 1)
printf("RGB565\n");
else if (config->videomode_color_format == 2)
printf("RGB666\n");
else if (config->videomode_color_format == 3)
printf("RGB666 Loosely Packed\n");
else if (config->videomode_color_format == 4)
printf("RGB888\n");
printf("\t\t PPS GPIO Pins: %s \n", config->pwm_blc ? "Using SOC" : "Using PMIC");
printf("\t\t CABC Support: %s\n", config->cabc ? "supported" : "not supported");
//insert video mode type
printf("\t\t Mode: %s\n", config->cmd_mode ? "COMMAND" : "VIDEO");
printf("\t\t Dithering: %s\n", config->dithering ? "done in Display Controller" : "done in Panel Controller");
printf("\tPort Desc\n");
//insert pixel overlap count
printf("\t\t Lane Count: %d\n", config->lane_cnt + 1);
printf("\t\t Dual Link Support: ");
if (config->dual_link == 0)
printf("not supported\n");
else if (config->dual_link == 1)
printf("Front Back mode\n");
else
printf("Pixel Alternative Mode\n");
printf("\tDphy Flags\n");
printf("\t\t Clock Stop: %s\n", config->clk_stop ? "ENABLED" : "DISABLED");
printf("\t\t EOT disabled: %s\n\n", config->eot_disabled ? "EOT not to be sent" : "EOT to be sent");
printf("\tHSTxTimeOut: 0x%x\n", config->hs_tx_timeout);
printf("\tLPRXTimeOut: 0x%x\n", config->lp_rx_timeout);
printf("\tTurnAroundTimeOut: 0x%x\n", config->turn_around_timeout);
printf("\tDeviceResetTimer: 0x%x\n", config->device_reset_timer);
printf("\tMasterinitTimer: 0x%x\n", config->master_init_timer);
printf("\tDBIBandwidthTimer: 0x%x\n", config->dbi_bw_timer);
printf("\tLpByteClkValue: 0x%x\n\n", config->lp_byte_clk_val);
printf("\tDphy Params\n");
printf("\t\tExit to zero Count: 0x%x\n", config->exit_zero_cnt);
printf("\t\tTrail Count: 0x%X\n", config->trail_cnt);
printf("\t\tClk zero count: 0x%x\n", config->clk_zero_cnt);
printf("\t\tPrepare count:0x%x\n\n", config->prepare_cnt);
printf("\tClockLaneSwitchingCount: 0x%x\n", config->clk_lane_switch_cnt);
printf("\tHighToLowSwitchingCount: 0x%x\n\n", config->hl_switch_cnt);
printf("\tTimings based on Dphy spec\n");
printf("\t\tTClkMiss: 0x%x\n", config->tclk_miss);
printf("\t\tTClkPost: 0x%x\n", config->tclk_post);
printf("\t\tTClkPre: 0x%x\n", config->tclk_pre);
printf("\t\tTClkPrepare: 0x%x\n", config->tclk_prepare);
printf("\t\tTClkSettle: 0x%x\n", config->tclk_settle);
printf("\t\tTClkTermEnable: 0x%x\n\n", config->tclk_term_enable);
printf("\tTClkTrail: 0x%x\n", config->tclk_trail);
printf("\tTClkPrepareTClkZero: 0x%x\n", config->tclk_prepare_clkzero);
printf("\tTHSExit: 0x%x\n", config->ths_exit);
printf("\tTHsPrepare: 0x%x\n", config->ths_prepare);
printf("\tTHsPrepareTHsZero: 0x%x\n", config->ths_prepare_hszero);
printf("\tTHSSettle: 0x%x\n", config->ths_settle);
printf("\tTHSSkip: 0x%x\n", config->ths_skip);
printf("\tTHsTrail: 0x%x\n", config->ths_trail);
printf("\tTInit: 0x%x\n", config->tinit);
printf("\tTLPX: 0x%x\n", config->tlpx);
printf("\tMIPI PPS\n");
printf("\t\tPanel power ON delay: %d\n", pps->panel_on_delay);
printf("\t\tPanel power on to Baklight enable delay: %d\n", pps->bl_enable_delay);
printf("\t\tBacklight disable to Panel power OFF delay: %d\n", pps->bl_disable_delay);
printf("\t\tPanel power OFF delay: %d\n", pps->panel_off_delay);
printf("\t\tPanel power cycle delay: %d\n", pps->panel_power_cycle_delay);
}
static const uint8_t *mipi_dump_send_packet(const uint8_t *data)
{
uint8_t flags, type;
uint16_t len, i;
flags = *data++;
type = *data++;
len = *((uint16_t *) data);
data += 2;
printf("\t\tSend DCS: Port %s, VC %d, %s, Type %02x, Length %u, Data",
(flags >> 3) & 1 ? "C" : "A",
(flags >> 1) & 3,
flags & 1 ? "HS" : "LP",
type,
len);
for (i = 0; i < len; i++)
printf(" %02x", *data++);
printf("\n");
return data;
}
static const uint8_t *mipi_dump_delay(const uint8_t *data)
{
printf("\t\tDelay: %u us\n", *((const uint32_t *)data));
return data + 4;
}
static const uint8_t *mipi_dump_gpio(const uint8_t *data)
{
uint8_t index, flags;
index = *data++;
flags = *data++;
printf("\t\tGPIO index %u, source %d, set %d\n",
index,
(flags >> 1) & 3,
flags & 1);
return data;
}
static const uint8_t *mipi_dump_i2c(const uint8_t *data)
{
uint8_t flags, index, bus, offset, len, i;
uint16_t address;
flags = *data++;
index = *data++;
bus = *data++;
address = *((uint16_t *) data);
data += 2;
offset = *data++;
len = *data++;
printf("\t\tSend I2C: Flags %02x, Index %02x, Bus %02x, Address %04x, Offset %02x, Length %u, Data",
flags, index, bus, address, offset, len);
for (i = 0; i < len; i++)
printf(" %02x", *data++);
printf("\n");
return data;
}
typedef const uint8_t * (*fn_mipi_elem_dump)(const uint8_t *data);
static const fn_mipi_elem_dump dump_elem[] = {
[MIPI_SEQ_ELEM_SEND_PKT] = mipi_dump_send_packet,
[MIPI_SEQ_ELEM_DELAY] = mipi_dump_delay,
[MIPI_SEQ_ELEM_GPIO] = mipi_dump_gpio,
[MIPI_SEQ_ELEM_I2C] = mipi_dump_i2c,
};
static const char * const seq_name[] = {
[MIPI_SEQ_ASSERT_RESET] = "MIPI_SEQ_ASSERT_RESET",
[MIPI_SEQ_INIT_OTP] = "MIPI_SEQ_INIT_OTP",
[MIPI_SEQ_DISPLAY_ON] = "MIPI_SEQ_DISPLAY_ON",
[MIPI_SEQ_DISPLAY_OFF] = "MIPI_SEQ_DISPLAY_OFF",
[MIPI_SEQ_DEASSERT_RESET] = "MIPI_SEQ_DEASSERT_RESET",
[MIPI_SEQ_BACKLIGHT_ON] = "MIPI_SEQ_BACKLIGHT_ON",
[MIPI_SEQ_BACKLIGHT_OFF] = "MIPI_SEQ_BACKLIGHT_OFF",
[MIPI_SEQ_TEAR_ON] = "MIPI_SEQ_TEAR_ON",
[MIPI_SEQ_TEAR_OFF] = "MIPI_SEQ_TEAR_OFF",
[MIPI_SEQ_POWER_ON] = "MIPI_SEQ_POWER_ON",
[MIPI_SEQ_POWER_OFF] = "MIPI_SEQ_POWER_OFF",
};
static const char *sequence_name(enum mipi_seq seq_id)
{
if (seq_id < ARRAY_SIZE(seq_name) && seq_name[seq_id])
return seq_name[seq_id];
else
return "(unknown)";
}
static const uint8_t *dump_sequence(const uint8_t *data)
{
fn_mipi_elem_dump mipi_elem_dump;
printf("\tSequence %u - %s\n", *data, sequence_name(*data));
/* Skip Sequence Byte. */
data++;
while (1) {
uint8_t operation_byte = *data++;
if (operation_byte == MIPI_SEQ_ELEM_END)
break;
if (operation_byte < ARRAY_SIZE(dump_elem) &&
dump_elem[operation_byte])
mipi_elem_dump = dump_elem[operation_byte];
else
mipi_elem_dump = NULL;
if (mipi_elem_dump) {
data = mipi_elem_dump(data);
} else {
printf("Error: Unsupported MIPI element %u\n",
operation_byte);
return NULL;
}
}
return data;
}
static uint16_t get_blocksize(void *p)
{
uint16_t *block_ptr, block_size;
block_ptr = (uint16_t *)((char *)p - 2);
block_size = *block_ptr;
return block_size;
}
static void dump_mipi_sequence(const struct bdb_block *block)
{
struct bdb_mipi_sequence *sequence = block->data;
const uint8_t *data;
int i, panel_id, seq_size;
uint16_t block_size;
/* Check if we have sequence block as well */
if (!sequence) {
printf("No MIPI Sequence found\n");
return;
}
printf("\tSequence block version v%u\n", sequence->version);
if (sequence->version >= 3)
return;
block_size = get_blocksize(sequence);
data = &sequence->data[0];
/*
* sequence block is variable length and hence we need to parse and
* get the sequence data for specific panel id
*/
for (i = 0; i < MAX_MIPI_CONFIGURATIONS; i++) {
panel_id = *data;
seq_size = *((uint16_t *) (data + 1));
data += 3;
if (data + seq_size > (const uint8_t *)sequence + block_size) {
printf("Invalid sequence block\n");
return;
}
if (panel_id == panel_type)
break;
data += seq_size;
}
if (i == MAX_MIPI_CONFIGURATIONS) {
printf("Sequence block detected but no valid configuration\n");
return;
}
/*
* loop into the sequence data and split into multiple sequneces
* There are only 5 types of sequences as of now
*/
while (1) {
int seq_id = *data;
if (seq_id == MIPI_SEQ_END)
break;
data = dump_sequence(data);
if (!data)
break;
}
}
static int
get_device_id(unsigned char *bios, int size)
{
int device;
int offset = (bios[0x19] << 8) + bios[0x18];
if (offset + 7 >= size)
return -1;
if (bios[offset] != 'P' ||
bios[offset+1] != 'C' ||
bios[offset+2] != 'I' ||
bios[offset+3] != 'R')
return -1;
device = (bios[offset+7] << 8) + bios[offset+6];
return device;
}
struct dumper {
uint8_t id;
const char *name;
void (*dump)(const struct bdb_block *block);
};
struct dumper dumpers[] = {
{
.id = BDB_GENERAL_FEATURES,
.name = "General features block",
.dump = dump_general_features,
},
{
.id = BDB_GENERAL_DEFINITIONS,
.name = "General definitions block",
.dump = dump_general_definitions,
},
{
.id = BDB_CHILD_DEVICE_TABLE,
.name = "Child devices block",
.dump = dump_child_devices,
},
{
.id = BDB_LVDS_OPTIONS,
.name = "LVDS options block",
.dump = dump_lvds_options,
},
{
.id = BDB_LVDS_LFP_DATA_PTRS,
.name = "LVDS timing pointer data",
.dump = dump_lvds_ptr_data,
},
{
.id = BDB_LVDS_LFP_DATA,
.name = "LVDS panel data block",
.dump = dump_lvds_data,
},
{
.id = BDB_LVDS_BACKLIGHT,
.name = "Backlight info block",
.dump = dump_backlight_info,
},
{
.id = BDB_SDVO_LVDS_OPTIONS,
.name = "SDVO LVDS options block",
.dump = dump_sdvo_lvds_options,
},
{
.id = BDB_SDVO_PANEL_DTDS,
.name = "SDVO panel dtds",
.dump = dump_sdvo_panel_dtds,
},
{
.id = BDB_DRIVER_FEATURES,
.name = "Driver feature data block",
.dump = dump_driver_feature,
},
{
.id = BDB_EDP,
.name = "eDP block",
.dump = dump_edp,
},
{
.id = BDB_MIPI_CONFIG,
.name = "MIPI configuration block",
.dump = dump_mipi_config,
},
{
.id = BDB_MIPI_SEQUENCE,
.name = "MIPI sequence block",
.dump = dump_mipi_sequence,
},
};
static void hex_dump(const struct bdb_block *block)
{
int i;
uint8_t *p = block->data;
for (i = 0; i < block->size; i++) {
if (i % 16 == 0)
printf("\t%04x: ", i);
printf("%02x", p[i]);
if (i % 16 == 15) {
if (i + 1 < block->size)
printf("\n");
} else if (i % 8 == 7) {
printf(" ");
} else {
printf(" ");
}
}
printf("\n\n");
}
static void dump_section(int section_id, int size)
{
struct dumper *dumper = NULL;
const struct bdb_block *block;
static int done[256];
int i;
if (done[section_id])
return;
done[section_id] = 1;
block = find_section(section_id, size);
if (!block)
return;
for (i = 0; i < ARRAY_SIZE(dumpers); i++) {
if (block->id == dumpers[i].id) {
dumper = &dumpers[i];
break;
}
}
if (dumper && dumper->name)
printf("BDB block %d - %s:\n", block->id, dumper->name);
else
printf("BDB block %d:\n", block->id);
hex_dump(block);
if (dumper && dumper->dump)
dumper->dump(block);
printf("\n");
}
int main(int argc, char **argv)
{
int fd;
struct vbt_header *vbt = NULL;
int vbt_off, bdb_off, i;
const char *filename = "bios";
struct stat finfo;
int size;
struct bdb_block *block;
char signature[17];
char *devid_string;
if (argc != 2) {
printf("usage: %s <rom file>\n", argv[0]);
return 1;
}
if ((devid_string = getenv("DEVICE")))
devid = strtoul(devid_string, NULL, 0);
filename = argv[1];
fd = open(filename, O_RDONLY);
if (fd == -1) {
printf("Couldn't open \"%s\": %s\n", filename, strerror(errno));
return 1;
}
if (stat(filename, &finfo)) {
printf("failed to stat \"%s\": %s\n", filename,
strerror(errno));
return 1;
}
size = finfo.st_size;
if (size == 0) {
int len = 0, ret;
size = 8192;
VBIOS = malloc (size);
while ((ret = read(fd, VBIOS + len, size - len))) {
if (ret < 0) {
printf("failed to read \"%s\": %s\n", filename,
strerror(errno));
return 1;
}
len += ret;
if (len == size) {
size *= 2;
VBIOS = realloc(VBIOS, size);
}
}
} else {
VBIOS = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, 0);
if (VBIOS == MAP_FAILED) {
printf("failed to map \"%s\": %s\n", filename, strerror(errno));
return 1;
}
}
/* Scour memory looking for the VBT signature */
for (i = 0; i + 4 < size; i++) {
if (!memcmp(VBIOS + i, "$VBT", 4)) {
vbt_off = i;
vbt = (struct vbt_header *)(VBIOS + i);
break;
}
}
if (!vbt) {
printf("VBT signature missing\n");
return 1;
}
printf("VBT vers: %d.%d\n", vbt->version / 100, vbt->version % 100);
bdb_off = vbt_off + vbt->bdb_offset;
if (bdb_off >= size - sizeof(struct bdb_header)) {
printf("Invalid VBT found, BDB points beyond end of data block\n");
return 1;
}
bdb = (struct bdb_header *)(VBIOS + bdb_off);
strncpy(signature, (char *)bdb->signature, 16);
signature[16] = 0;
printf("BDB sig: %s\n", signature);
printf("BDB vers: %d\n", bdb->version);
printf("Available sections: ");
for (i = 0; i < 256; i++) {
block = find_section(i, size);
if (!block)
continue;
printf("%d ", i);
free(block);
}
printf("\n");
if (devid == -1)
devid = get_device_id(VBIOS, size);
if (devid == -1)
printf("Warning: could not find PCI device ID!\n");
dump_section(BDB_GENERAL_FEATURES, size);
dump_section(BDB_GENERAL_DEFINITIONS, size);
dump_section(BDB_CHILD_DEVICE_TABLE, size);
dump_section(BDB_LVDS_OPTIONS, size);
dump_section(BDB_LVDS_LFP_DATA_PTRS, size);
dump_section(BDB_LVDS_LFP_DATA, size);
dump_section(BDB_LVDS_BACKLIGHT, size);
dump_section(BDB_SDVO_LVDS_OPTIONS, size);
dump_section(BDB_SDVO_PANEL_DTDS, size);
dump_section(BDB_DRIVER_FEATURES, size);
dump_section(BDB_EDP, size);
dump_section(BDB_MIPI_CONFIG, size);
dump_section(BDB_MIPI_SEQUENCE, size);
for (i = 0; i < 256; i++)
dump_section(i, size);
return 0;
}