mirror of
https://github.com/tiagovignatti/intel-gpu-tools.git
synced 2025-06-10 09:26:10 +00:00
https://en.wikipedia.org/wiki/Interquartile_mean The IQM is a truncated mean and so is very similar to the scoring method used in sports that are evaluated by a panel of judges: discard the lowest and the highest scores; calculate the mean value of the remaining scores. It's useful to hide outliers in measurements (due to cold cache etc), without having to worry too much about the actual distribution. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
531 lines
13 KiB
C
531 lines
13 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "igt_core.h"
|
|
#include "igt_stats.h"
|
|
|
|
#define U64_MAX ((uint64_t)~0ULL)
|
|
|
|
/**
|
|
* SECTION:igt_stats
|
|
* @short_description: Tools for statistical analysis
|
|
* @title: Stats
|
|
* @include: igt_stats.h
|
|
*
|
|
* Various tools to make sense of data.
|
|
*
|
|
* #igt_stats_t is a container of data samples. igt_stats_push() is used to add
|
|
* new samples and various results (mean, variance, standard deviation, ...)
|
|
* can then be retrieved.
|
|
*
|
|
* |[
|
|
* igt_stats_t stats;
|
|
*
|
|
* igt_stats_init(&stats, 8);
|
|
*
|
|
* igt_stats_push(&stats, 2);
|
|
* igt_stats_push(&stats, 4);
|
|
* igt_stats_push(&stats, 4);
|
|
* igt_stats_push(&stats, 4);
|
|
* igt_stats_push(&stats, 5);
|
|
* igt_stats_push(&stats, 5);
|
|
* igt_stats_push(&stats, 7);
|
|
* igt_stats_push(&stats, 9);
|
|
*
|
|
* printf("Mean: %lf\n", igt_stats_get_mean(&stats));
|
|
*
|
|
* igt_stats_fini(&stats);
|
|
* ]|
|
|
*/
|
|
|
|
static unsigned int get_new_capacity(int need)
|
|
{
|
|
unsigned int new_capacity;
|
|
|
|
/* taken from Python's list */
|
|
new_capacity = (need >> 6) + (need < 9 ? 3 : 6);
|
|
new_capacity += need;
|
|
|
|
return new_capacity;
|
|
}
|
|
|
|
static void igt_stats_ensure_capacity(igt_stats_t *stats,
|
|
unsigned int n_additional_values)
|
|
{
|
|
unsigned int new_n_values = stats->n_values + n_additional_values;
|
|
unsigned int new_capacity;
|
|
|
|
if (new_n_values <= stats->capacity)
|
|
return;
|
|
|
|
new_capacity = get_new_capacity(new_n_values);
|
|
stats->values = realloc(stats->values,
|
|
sizeof(*stats->values) * new_capacity);
|
|
igt_assert(stats->values);
|
|
|
|
stats->capacity = new_capacity;
|
|
|
|
free(stats->sorted);
|
|
stats->sorted = NULL;
|
|
}
|
|
|
|
/**
|
|
* igt_stats_init:
|
|
* @stats: An #igt_stats_t instance
|
|
*
|
|
* Initializes an #igt_stats_t instance. igt_stats_fini() must be called once
|
|
* finished with @stats.
|
|
*/
|
|
void igt_stats_init(igt_stats_t *stats)
|
|
{
|
|
memset(stats, 0, sizeof(*stats));
|
|
|
|
igt_stats_ensure_capacity(stats, 128);
|
|
|
|
stats->min = U64_MAX;
|
|
stats->max = 0;
|
|
}
|
|
|
|
/**
|
|
* igt_stats_init_with_size:
|
|
* @stats: An #igt_stats_t instance
|
|
* @capacity: Number of data samples @stats can contain
|
|
*
|
|
* Like igt_stats_init() but with a size to avoid reallocating the underlying
|
|
* array(s) when pushing new values. Useful if we have a good idea of the
|
|
* number of data points we want @stats to hold.
|
|
*
|
|
* igt_stats_fini() must be called once finished with @stats.
|
|
*/
|
|
void igt_stats_init_with_size(igt_stats_t *stats, unsigned int capacity)
|
|
{
|
|
memset(stats, 0, sizeof(*stats));
|
|
|
|
igt_stats_ensure_capacity(stats, capacity);
|
|
|
|
stats->min = U64_MAX;
|
|
stats->max = 0;
|
|
}
|
|
|
|
/**
|
|
* igt_stats_fini:
|
|
* @stats: An #igt_stats_t instance
|
|
*
|
|
* Frees resources allocated in igt_stats_init().
|
|
*/
|
|
void igt_stats_fini(igt_stats_t *stats)
|
|
{
|
|
free(stats->values);
|
|
free(stats->sorted);
|
|
}
|
|
|
|
|
|
/**
|
|
* igt_stats_is_population:
|
|
* @stats: An #igt_stats_t instance
|
|
*
|
|
* Returns: #true if @stats represents a population, #false if only a sample.
|
|
*
|
|
* See igt_stats_set_population() for more details.
|
|
*/
|
|
bool igt_stats_is_population(igt_stats_t *stats)
|
|
{
|
|
return stats->is_population;
|
|
}
|
|
|
|
/**
|
|
* igt_stats_set_population:
|
|
* @stats: An #igt_stats_t instance
|
|
* @full_population: Whether we're dealing with sample data or a full
|
|
* population
|
|
*
|
|
* In statistics, we usually deal with a subset of the full data (which may be
|
|
* a continuous or infinite set). Data analysis is then done on a sample of
|
|
* this population.
|
|
*
|
|
* This has some importance as only having a sample of the data leads to
|
|
* [biased estimators](https://en.wikipedia.org/wiki/Bias_of_an_estimator). We
|
|
* currently used the information given by this method to apply
|
|
* [Bessel's correction](https://en.wikipedia.org/wiki/Bessel%27s_correction)
|
|
* to the variance.
|
|
*
|
|
* Note that even if we manage to have an unbiased variance by multiplying
|
|
* a sample variance by the Bessel's correction, n/(n - 1), the standard
|
|
* deviation derived from the unbiased variance isn't itself unbiased.
|
|
* Statisticians talk about a "corrected" standard deviation.
|
|
*
|
|
* When giving #true to this function, the data set in @stats is considered a
|
|
* full population. It's considered a sample of a bigger population otherwise.
|
|
*
|
|
* When newly created, @stats defaults to holding sample data.
|
|
*/
|
|
void igt_stats_set_population(igt_stats_t *stats, bool full_population)
|
|
{
|
|
if (full_population == stats->is_population)
|
|
return;
|
|
|
|
stats->is_population = full_population;
|
|
stats->mean_variance_valid = false;
|
|
}
|
|
|
|
/**
|
|
* igt_stats_push:
|
|
* @stats: An #igt_stats_t instance
|
|
* @value: An integer value
|
|
*
|
|
* Adds a new value to the @stats dataset.
|
|
*/
|
|
void igt_stats_push(igt_stats_t *stats, uint64_t value)
|
|
{
|
|
igt_stats_ensure_capacity(stats, 1);
|
|
|
|
stats->values[stats->n_values++] = value;
|
|
|
|
stats->mean_variance_valid = false;
|
|
stats->sorted_array_valid = false;
|
|
|
|
if (value < stats->min)
|
|
stats->min = value;
|
|
if (value > stats->max)
|
|
stats->max = value;
|
|
}
|
|
|
|
/**
|
|
* igt_stats_push_array:
|
|
* @stats: An #igt_stats_t instance
|
|
* @values: (array length=n_values): A pointer to an array of data points
|
|
* @n_values: The number of data points to add
|
|
*
|
|
* Adds an array of values to the @stats dataset.
|
|
*/
|
|
void igt_stats_push_array(igt_stats_t *stats,
|
|
const uint64_t *values, unsigned int n_values)
|
|
{
|
|
unsigned int i;
|
|
|
|
igt_stats_ensure_capacity(stats, n_values);
|
|
|
|
for (i = 0; i < n_values; i++)
|
|
igt_stats_push(stats, values[i]);
|
|
}
|
|
|
|
/**
|
|
* igt_stats_get_min:
|
|
* @stats: An #igt_stats_t instance
|
|
*
|
|
* Retrieves the minimal value in @stats
|
|
*/
|
|
uint64_t igt_stats_get_min(igt_stats_t *stats)
|
|
{
|
|
return stats->min;
|
|
}
|
|
|
|
/**
|
|
* igt_stats_get_max:
|
|
* @stats: An #igt_stats_t instance
|
|
*
|
|
* Retrieves the maximum value in @stats
|
|
*/
|
|
uint64_t igt_stats_get_max(igt_stats_t *stats)
|
|
{
|
|
return stats->max;
|
|
}
|
|
|
|
/**
|
|
* igt_stats_get_range:
|
|
* @stats: An #igt_stats_t instance
|
|
*
|
|
* Retrieves the range of the values in @stats. The range is the difference
|
|
* between the highest and the lowest value.
|
|
*
|
|
* The range can be a deceiving characterization of the values, because there
|
|
* can be extreme minimal and maximum values that are just anomalies. Prefer
|
|
* the interquatile range (see igt_stats_get_iqr()) or an histogram.
|
|
*/
|
|
uint64_t igt_stats_get_range(igt_stats_t *stats)
|
|
{
|
|
return igt_stats_get_max(stats) - igt_stats_get_min(stats);
|
|
}
|
|
|
|
static int cmp_u64(const void *pa, const void *pb)
|
|
{
|
|
const uint64_t *a = pa, *b = pb;
|
|
|
|
if (*a < *b)
|
|
return -1;
|
|
if (*a > *b)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void igt_stats_ensure_sorted_values(igt_stats_t *stats)
|
|
{
|
|
if (stats->sorted_array_valid)
|
|
return;
|
|
|
|
if (!stats->sorted) {
|
|
/*
|
|
* igt_stats_ensure_capacity() will free ->sorted when the
|
|
* capacity increases, which also correspond to an invalidation
|
|
* of the sorted array. We'll then reallocate it here on
|
|
* demand.
|
|
*/
|
|
stats->sorted = calloc(stats->capacity, sizeof(*stats->values));
|
|
igt_assert(stats->sorted);
|
|
}
|
|
|
|
memcpy(stats->sorted, stats->values,
|
|
sizeof(*stats->values) * stats->n_values);
|
|
|
|
qsort(stats->sorted, stats->n_values, sizeof(*stats->values), cmp_u64);
|
|
|
|
stats->sorted_array_valid = true;
|
|
}
|
|
|
|
/*
|
|
* We use Tukey's hinge for our quartiles determination.
|
|
* ends (end, lower_end) are exclusive.
|
|
*/
|
|
static double
|
|
igt_stats_get_median_internal(igt_stats_t *stats,
|
|
unsigned int start, unsigned int end,
|
|
unsigned int *lower_end /* out */,
|
|
unsigned int *upper_start /* out */)
|
|
{
|
|
unsigned int mid, n_values = end - start;
|
|
double median;
|
|
|
|
igt_stats_ensure_sorted_values(stats);
|
|
|
|
/* odd number of data points */
|
|
if (n_values % 2 == 1) {
|
|
/* median is the value in the middle (actual datum) */
|
|
mid = start + n_values / 2;
|
|
median = stats->sorted[mid];
|
|
|
|
/* the two halves contain the median value */
|
|
if (lower_end)
|
|
*lower_end = mid + 1;
|
|
if (upper_start)
|
|
*upper_start = mid;
|
|
|
|
/* even number of data points */
|
|
} else {
|
|
/*
|
|
* The middle is in between two indexes, 'mid' points at the
|
|
* lower one. The median is then the average between those two
|
|
* values.
|
|
*/
|
|
mid = start + n_values / 2 - 1;
|
|
median = (stats->sorted[mid] + stats->sorted[mid + 1]) / 2.;
|
|
|
|
if (lower_end)
|
|
*lower_end = mid + 1;
|
|
if (upper_start)
|
|
*upper_start = mid + 1;
|
|
}
|
|
|
|
return median;
|
|
}
|
|
|
|
/**
|
|
* igt_stats_get_quartiles:
|
|
* @stats: An #igt_stats_t instance
|
|
* @q1: (out): lower or 25th quartile
|
|
* @q2: (out): median or 50th quartile
|
|
* @q3: (out): upper or 75th quartile
|
|
*
|
|
* Retrieves the [quartiles](https://en.wikipedia.org/wiki/Quartile) of the
|
|
* @stats dataset.
|
|
*/
|
|
void igt_stats_get_quartiles(igt_stats_t *stats,
|
|
double *q1, double *q2, double *q3)
|
|
{
|
|
unsigned int lower_end, upper_start;
|
|
double ret;
|
|
|
|
if (stats->n_values < 3) {
|
|
if (q1)
|
|
*q1 = 0.;
|
|
if (q2)
|
|
*q2 = 0.;
|
|
if (q3)
|
|
*q3 = 0.;
|
|
return;
|
|
}
|
|
|
|
ret = igt_stats_get_median_internal(stats, 0, stats->n_values,
|
|
&lower_end, &upper_start);
|
|
if (q2)
|
|
*q2 = ret;
|
|
|
|
ret = igt_stats_get_median_internal(stats, 0, lower_end, NULL, NULL);
|
|
if (q1)
|
|
*q1 = ret;
|
|
|
|
ret = igt_stats_get_median_internal(stats, upper_start, stats->n_values,
|
|
NULL, NULL);
|
|
if (q3)
|
|
*q3 = ret;
|
|
}
|
|
|
|
/**
|
|
* igt_stats_get_iqr:
|
|
* @stats: An #igt_stats_t instance
|
|
*
|
|
* Retrieves the
|
|
* [interquartile range](https://en.wikipedia.org/wiki/Interquartile_range)
|
|
* (IQR) of the @stats dataset.
|
|
*/
|
|
double igt_stats_get_iqr(igt_stats_t *stats)
|
|
{
|
|
double q1, q3;
|
|
|
|
igt_stats_get_quartiles(stats, &q1, NULL, &q3);
|
|
return (q3 - q1);
|
|
}
|
|
|
|
/**
|
|
* igt_stats_get_median:
|
|
* @stats: An #igt_stats_t instance
|
|
*
|
|
* Retrieves the median of the @stats dataset.
|
|
*/
|
|
double igt_stats_get_median(igt_stats_t *stats)
|
|
{
|
|
return igt_stats_get_median_internal(stats, 0, stats->n_values,
|
|
NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* Algorithm popularised by Knuth in:
|
|
*
|
|
* The Art of Computer Programming, volume 2: Seminumerical Algorithms,
|
|
* 3rd edn., p. 232. Boston: Addison-Wesley
|
|
*
|
|
* Source: https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
|
|
*/
|
|
static void igt_stats_knuth_mean_variance(igt_stats_t *stats)
|
|
{
|
|
double mean = 0., m2 = 0.;
|
|
unsigned int i;
|
|
|
|
if (stats->mean_variance_valid)
|
|
return;
|
|
|
|
for (i = 0; i < stats->n_values; i++) {
|
|
double delta = stats->values[i] - mean;
|
|
|
|
mean += delta / (i + 1);
|
|
m2 += delta * (stats->values[i] - mean);
|
|
}
|
|
|
|
stats->mean = mean;
|
|
if (stats->n_values > 1 && !stats->is_population)
|
|
stats->variance = m2 / (stats->n_values - 1);
|
|
else
|
|
stats->variance = m2 / stats->n_values;
|
|
stats->mean_variance_valid = true;
|
|
}
|
|
|
|
/**
|
|
* igt_stats_get_mean:
|
|
* @stats: An #igt_stats_t instance
|
|
*
|
|
* Retrieves the mean of the @stats dataset.
|
|
*/
|
|
double igt_stats_get_mean(igt_stats_t *stats)
|
|
{
|
|
igt_stats_knuth_mean_variance(stats);
|
|
|
|
return stats->mean;
|
|
}
|
|
|
|
/**
|
|
* igt_stats_get_variance:
|
|
* @stats: An #igt_stats_t instance
|
|
*
|
|
* Retrieves the variance of the @stats dataset.
|
|
*/
|
|
double igt_stats_get_variance(igt_stats_t *stats)
|
|
{
|
|
igt_stats_knuth_mean_variance(stats);
|
|
|
|
return stats->variance;
|
|
}
|
|
|
|
/**
|
|
* igt_stats_get_std_deviation:
|
|
* @stats: An #igt_stats_t instance
|
|
*
|
|
* Retrieves the standard deviation of the @stats dataset.
|
|
*/
|
|
double igt_stats_get_std_deviation(igt_stats_t *stats)
|
|
{
|
|
igt_stats_knuth_mean_variance(stats);
|
|
|
|
return sqrt(stats->variance);
|
|
}
|
|
|
|
/**
|
|
* igt_stats_get_iqm:
|
|
* @stats: An #igt_stats_t instance
|
|
*
|
|
* Retrieves the interquartile mean of the @stats dataset.
|
|
*
|
|
* The interquartile mean is a "statistical measure of central tendency".
|
|
* It is a truncated mean that discards the lowest and highest 25% of values,
|
|
* and calculates the mean value of the remaining central values.
|
|
*/
|
|
double igt_stats_get_iqm(igt_stats_t *stats)
|
|
{
|
|
unsigned int q1, q3, i;
|
|
double mean;
|
|
|
|
igt_stats_ensure_sorted_values(stats);
|
|
|
|
q1 = (stats->n_values + 3) / 4;
|
|
q3 = 3 * stats->n_values / 4;
|
|
|
|
mean = 0;
|
|
for (i = 0; i <= q3 - q1; i++)
|
|
mean += (stats->sorted[q1 + i] - mean) / (i + 1);
|
|
|
|
if (stats->n_values % 4) {
|
|
double rem = .5 * (stats->n_values % 4) / 4;
|
|
|
|
q1 = (stats->n_values) / 4;
|
|
q3 = (3 * stats->n_values + 3) / 4;
|
|
|
|
mean += rem * (stats->sorted[q1] - mean) / i++;
|
|
mean += rem * (stats->sorted[q3] - mean) / i++;
|
|
}
|
|
|
|
return mean;
|
|
}
|