mirror of
https://github.com/ioacademy-jikim/debugging
synced 2025-06-08 00:16:11 +00:00
470 lines
14 KiB
C
470 lines
14 KiB
C
/* -*- mode: C; c-basic-offset: 3; -*- */
|
|
|
|
#include <assert.h>
|
|
#include <string.h> // memset
|
|
#include "vtest.h"
|
|
|
|
|
|
/* A convenience function to compute either v1 & ~v2 & val2 or
|
|
v1 & ~v2 & ~val2 depending on INVERT_VAL2. */
|
|
static vbits_t
|
|
and_combine(vbits_t v1, vbits_t v2, value_t val2, int invert_val2)
|
|
{
|
|
assert(v1.num_bits == v2.num_bits);
|
|
|
|
vbits_t new = { .num_bits = v2.num_bits };
|
|
|
|
if (invert_val2) {
|
|
switch (v2.num_bits) {
|
|
case 8: val2.u8 = ~val2.u8 & 0xff; break;
|
|
case 16: val2.u16 = ~val2.u16 & 0xffff; break;
|
|
case 32: val2.u32 = ~val2.u32; break;
|
|
case 64: val2.u64 = ~val2.u64; break;
|
|
default:
|
|
panic(__func__);
|
|
}
|
|
}
|
|
|
|
switch (v2.num_bits) {
|
|
case 8:
|
|
new.bits.u8 = (v1.bits.u8 & ~v2.bits.u8 & val2.u8) & 0xff;
|
|
break;
|
|
case 16:
|
|
new.bits.u16 = (v1.bits.u16 & ~v2.bits.u16 & val2.u16) & 0xffff;
|
|
break;
|
|
case 32:
|
|
new.bits.u32 = (v1.bits.u32 & ~v2.bits.u32 & val2.u32);
|
|
break;
|
|
case 64:
|
|
new.bits.u64 = (v1.bits.u64 & ~v2.bits.u64 & val2.u64);
|
|
break;
|
|
default:
|
|
panic(__func__);
|
|
}
|
|
return new;
|
|
}
|
|
|
|
/* Check the result of a binary operation. */
|
|
static void
|
|
check_result_for_binary(const irop_t *op, const test_data_t *data)
|
|
{
|
|
const opnd_t *result = &data->result;
|
|
const opnd_t *opnd1 = &data->opnds[0];
|
|
const opnd_t *opnd2 = &data->opnds[1];
|
|
vbits_t expected_vbits;
|
|
|
|
/* Only handle those undef-kinds that actually occur. */
|
|
switch (op->undef_kind) {
|
|
case UNDEF_NONE:
|
|
expected_vbits = defined_vbits(result->vbits.num_bits);
|
|
break;
|
|
|
|
case UNDEF_ALL:
|
|
expected_vbits = undefined_vbits(result->vbits.num_bits);
|
|
break;
|
|
|
|
case UNDEF_LEFT:
|
|
// LEFT with respect to the leftmost 1-bit in both operands
|
|
expected_vbits = left_vbits(or_vbits(opnd1->vbits, opnd2->vbits),
|
|
result->vbits.num_bits);
|
|
break;
|
|
|
|
case UNDEF_SAME:
|
|
assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
|
|
assert(opnd1->vbits.num_bits == result->vbits.num_bits);
|
|
|
|
// SAME with respect to the 1-bits in both operands
|
|
expected_vbits = or_vbits(opnd1->vbits, opnd2->vbits);
|
|
break;
|
|
|
|
case UNDEF_CONCAT:
|
|
assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
|
|
assert(result->vbits.num_bits == 2 * opnd1->vbits.num_bits);
|
|
expected_vbits = concat_vbits(opnd1->vbits, opnd2->vbits);
|
|
break;
|
|
|
|
case UNDEF_SHL:
|
|
/* If any bit in the 2nd operand is undefined, so are all bits
|
|
of the result. */
|
|
if (! completely_defined_vbits(opnd2->vbits)) {
|
|
expected_vbits = undefined_vbits(result->vbits.num_bits);
|
|
} else {
|
|
assert(opnd2->vbits.num_bits == 8);
|
|
unsigned shift_amount = opnd2->value.u8;
|
|
|
|
expected_vbits = shl_vbits(opnd1->vbits, shift_amount);
|
|
}
|
|
break;
|
|
|
|
case UNDEF_SHR:
|
|
/* If any bit in the 2nd operand is undefined, so are all bits
|
|
of the result. */
|
|
if (! completely_defined_vbits(opnd2->vbits)) {
|
|
expected_vbits = undefined_vbits(result->vbits.num_bits);
|
|
} else {
|
|
assert(opnd2->vbits.num_bits == 8);
|
|
unsigned shift_amount = opnd2->value.u8;
|
|
|
|
expected_vbits = shr_vbits(opnd1->vbits, shift_amount);
|
|
}
|
|
break;
|
|
|
|
case UNDEF_SAR:
|
|
/* If any bit in the 2nd operand is undefined, so are all bits
|
|
of the result. */
|
|
if (! completely_defined_vbits(opnd2->vbits)) {
|
|
expected_vbits = undefined_vbits(result->vbits.num_bits);
|
|
} else {
|
|
assert(opnd2->vbits.num_bits == 8);
|
|
unsigned shift_amount = opnd2->value.u8;
|
|
|
|
expected_vbits = sar_vbits(opnd1->vbits, shift_amount);
|
|
}
|
|
break;
|
|
|
|
case UNDEF_AND: {
|
|
/* Let v1, v2 be the V-bits of the 1st and 2nd operand, respectively
|
|
Let b1, b2 be the actual value of the 1st and 2nd operand, respect.
|
|
And output bit is undefined (i.e. its V-bit == 1), iff
|
|
(1) (v1 == 1) && (v2 == 1) OR
|
|
(2) (v1 == 1) && (v2 == 0 && b2 == 1) OR
|
|
(3) (v2 == 1) && (v1 == 0 && b1 == 1)
|
|
*/
|
|
vbits_t term1, term2, term3;
|
|
term1 = and_vbits(opnd1->vbits, opnd2->vbits);
|
|
term2 = and_combine(opnd1->vbits, opnd2->vbits, opnd2->value, 0);
|
|
term3 = and_combine(opnd2->vbits, opnd1->vbits, opnd1->value, 0);
|
|
expected_vbits = or_vbits(term1, or_vbits(term2, term3));
|
|
break;
|
|
}
|
|
|
|
case UNDEF_OR: {
|
|
/* Let v1, v2 be the V-bits of the 1st and 2nd operand, respectively
|
|
Let b1, b2 be the actual value of the 1st and 2nd operand, respect.
|
|
And output bit is undefined (i.e. its V-bit == 1), iff
|
|
(1) (v1 == 1) && (v2 == 1) OR
|
|
(2) (v1 == 1) && (v2 == 0 && b2 == 0) OR
|
|
(3) (v2 == 1) && (v1 == 0 && b1 == 0)
|
|
*/
|
|
vbits_t term1, term2, term3;
|
|
term1 = and_vbits(opnd1->vbits, opnd2->vbits);
|
|
term2 = and_combine(opnd1->vbits, opnd2->vbits, opnd2->value, 1);
|
|
term3 = and_combine(opnd2->vbits, opnd1->vbits, opnd1->value, 1);
|
|
expected_vbits = or_vbits(term1, or_vbits(term2, term3));
|
|
break;
|
|
}
|
|
|
|
case UNDEF_ORD:
|
|
/* Set expected_vbits for the Iop_CmpORD category of iops.
|
|
* If any of the input bits is undefined the least significant
|
|
* three bits in the result will be set, i.e. 0xe.
|
|
*/
|
|
expected_vbits = cmpord_vbits(opnd1->vbits.num_bits,
|
|
opnd2->vbits.num_bits);
|
|
break;
|
|
|
|
default:
|
|
panic(__func__);
|
|
}
|
|
|
|
if (! equal_vbits(result->vbits, expected_vbits))
|
|
complain(op, data, expected_vbits);
|
|
}
|
|
|
|
|
|
static int
|
|
test_shift(const irop_t *op, test_data_t *data)
|
|
{
|
|
unsigned num_input_bits, i;
|
|
opnd_t *opnds = data->opnds;
|
|
int tests_done = 0;
|
|
|
|
/* When testing the 1st operand's undefinedness propagation,
|
|
do so with all possible shift amnounts */
|
|
for (unsigned amount = 0; amount < bitsof_irtype(opnds[0].type); ++amount) {
|
|
opnds[1].value.u8 = amount;
|
|
|
|
// 1st (left) operand
|
|
num_input_bits = bitsof_irtype(opnds[0].type);
|
|
|
|
for (i = 0; i < num_input_bits; ++i) {
|
|
opnds[0].vbits = onehot_vbits(i, bitsof_irtype(opnds[0].type));
|
|
opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
|
|
|
|
valgrind_execute_test(op, data);
|
|
|
|
check_result_for_binary(op, data);
|
|
tests_done++;
|
|
}
|
|
}
|
|
|
|
// 2nd (right) operand
|
|
|
|
/* If the operand is an immediate value, there are no v-bits to set. */
|
|
if (op->shift_amount_is_immediate) return tests_done;
|
|
|
|
num_input_bits = bitsof_irtype(opnds[1].type);
|
|
|
|
for (i = 0; i < num_input_bits; ++i) {
|
|
opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
|
|
opnds[1].vbits = onehot_vbits(i, bitsof_irtype(opnds[1].type));
|
|
|
|
valgrind_execute_test(op, data);
|
|
|
|
check_result_for_binary(op, data);
|
|
|
|
tests_done++;
|
|
}
|
|
return tests_done;
|
|
}
|
|
|
|
|
|
static value_t
|
|
all_bits_zero_value(unsigned num_bits)
|
|
{
|
|
value_t val;
|
|
|
|
switch (num_bits) {
|
|
case 8: val.u8 = 0; break;
|
|
case 16: val.u16 = 0; break;
|
|
case 32: val.u32 = 0; break;
|
|
case 64: val.u64 = 0; break;
|
|
default:
|
|
panic(__func__);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
|
|
static value_t
|
|
all_bits_one_value(unsigned num_bits)
|
|
{
|
|
value_t val;
|
|
|
|
switch (num_bits) {
|
|
case 8: val.u8 = 0xff; break;
|
|
case 16: val.u16 = 0xffff; break;
|
|
case 32: val.u32 = ~0u; break;
|
|
case 64: val.u64 = ~0ull; break;
|
|
default:
|
|
panic(__func__);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
|
|
static int
|
|
test_and(const irop_t *op, test_data_t *data)
|
|
{
|
|
unsigned num_input_bits, bitpos;
|
|
opnd_t *opnds = data->opnds;
|
|
int tests_done = 0;
|
|
|
|
/* Undefinedness does not propagate if the other operand is 0.
|
|
Use an all-bits-zero operand and test the other operand in
|
|
the usual way (one bit undefined at a time). */
|
|
|
|
// 1st (left) operand variable, 2nd operand all-bits-zero
|
|
num_input_bits = bitsof_irtype(opnds[0].type);
|
|
|
|
for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
|
|
opnds[0].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[0].type));
|
|
opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
|
|
opnds[1].value = all_bits_zero_value(bitsof_irtype(opnds[1].type));
|
|
|
|
valgrind_execute_test(op, data);
|
|
|
|
check_result_for_binary(op, data);
|
|
tests_done++;
|
|
}
|
|
|
|
// 2nd (right) operand variable, 1st operand all-bits-zero
|
|
num_input_bits = bitsof_irtype(opnds[1].type);
|
|
|
|
for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
|
|
opnds[1].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[1].type));
|
|
opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
|
|
opnds[0].value = all_bits_zero_value(bitsof_irtype(opnds[0].type));
|
|
|
|
valgrind_execute_test(op, data);
|
|
|
|
check_result_for_binary(op, data);
|
|
tests_done++;
|
|
}
|
|
|
|
/* Undefinedness propagates if the other operand is 1.
|
|
Use an all-bits-one operand and test the other operand in
|
|
the usual way (one bit undefined at a time). */
|
|
|
|
// 1st (left) operand variable, 2nd operand all-bits-one
|
|
num_input_bits = bitsof_irtype(opnds[0].type);
|
|
|
|
for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
|
|
opnds[0].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[0].type));
|
|
opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
|
|
opnds[1].value = all_bits_one_value(bitsof_irtype(opnds[1].type));
|
|
|
|
valgrind_execute_test(op, data);
|
|
|
|
check_result_for_binary(op, data);
|
|
tests_done++;
|
|
}
|
|
|
|
// 2nd (right) operand variable, 1st operand all-bits-one
|
|
num_input_bits = bitsof_irtype(opnds[1].type);
|
|
|
|
for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
|
|
opnds[1].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[1].type));
|
|
opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
|
|
opnds[0].value = all_bits_one_value(bitsof_irtype(opnds[0].type));
|
|
|
|
valgrind_execute_test(op, data);
|
|
|
|
check_result_for_binary(op, data);
|
|
tests_done++;
|
|
}
|
|
return tests_done;
|
|
}
|
|
|
|
|
|
static int
|
|
test_or(const irop_t *op, test_data_t *data)
|
|
{
|
|
unsigned num_input_bits, bitpos;
|
|
opnd_t *opnds = data->opnds;
|
|
int tests_done = 0;
|
|
|
|
/* Undefinedness does not propagate if the other operand is 1.
|
|
Use an all-bits-one operand and test the other operand in
|
|
the usual way (one bit undefined at a time). */
|
|
|
|
// 1st (left) operand variable, 2nd operand all-bits-one
|
|
num_input_bits = bitsof_irtype(opnds[0].type);
|
|
|
|
opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
|
|
opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
|
|
opnds[1].value = all_bits_one_value(bitsof_irtype(opnds[1].type));
|
|
|
|
for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
|
|
opnds[0].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[0].type));
|
|
|
|
valgrind_execute_test(op, data);
|
|
|
|
check_result_for_binary(op, data);
|
|
tests_done++;
|
|
}
|
|
|
|
// 2nd (right) operand variable, 1st operand all-bits-one
|
|
num_input_bits = bitsof_irtype(opnds[1].type);
|
|
|
|
opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
|
|
opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
|
|
opnds[0].value = all_bits_one_value(bitsof_irtype(opnds[0].type));
|
|
|
|
for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
|
|
opnds[1].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[1].type));
|
|
|
|
valgrind_execute_test(op, data);
|
|
|
|
check_result_for_binary(op, data);
|
|
tests_done++;
|
|
}
|
|
|
|
/* Undefinedness propagates if the other operand is 0.
|
|
Use an all-bits-zero operand and test the other operand in
|
|
the usual way (one bit undefined at a time). */
|
|
|
|
// 1st (left) operand variable, 2nd operand all-bits-zero
|
|
num_input_bits = bitsof_irtype(opnds[0].type);
|
|
|
|
opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
|
|
opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
|
|
opnds[1].value = all_bits_zero_value(bitsof_irtype(opnds[1].type));
|
|
|
|
for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
|
|
opnds[0].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[0].type));
|
|
|
|
valgrind_execute_test(op, data);
|
|
|
|
check_result_for_binary(op, data);
|
|
tests_done++;
|
|
}
|
|
|
|
// 2nd (right) operand variable, 1st operand all-bits-zero
|
|
num_input_bits = bitsof_irtype(opnds[1].type);
|
|
|
|
opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
|
|
opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
|
|
opnds[0].value = all_bits_zero_value(bitsof_irtype(opnds[0].type));
|
|
|
|
for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
|
|
opnds[1].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[1].type));
|
|
|
|
valgrind_execute_test(op, data);
|
|
|
|
check_result_for_binary(op, data);
|
|
tests_done++;
|
|
}
|
|
return tests_done;
|
|
}
|
|
|
|
|
|
int
|
|
test_binary_op(const irop_t *op, test_data_t *data)
|
|
{
|
|
unsigned num_input_bits, i, bitpos;
|
|
opnd_t *opnds = data->opnds;
|
|
int tests_done = 0;
|
|
|
|
/* Handle special cases upfront */
|
|
switch (op->undef_kind) {
|
|
case UNDEF_SHL:
|
|
case UNDEF_SHR:
|
|
case UNDEF_SAR:
|
|
return test_shift(op, data);
|
|
|
|
case UNDEF_AND:
|
|
return test_and(op, data);
|
|
|
|
case UNDEF_OR:
|
|
return test_or(op, data);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* For each operand, set a single bit to undefined and observe how
|
|
that propagates to the output. Do this for all bits in each
|
|
operand. */
|
|
for (i = 0; i < 2; ++i) {
|
|
|
|
/* If this is a shift op that requires an immediate shift amount,
|
|
do not iterate the v-bits of the 2nd operand */
|
|
if (i == 1 && op->shift_amount_is_immediate) break;
|
|
|
|
num_input_bits = bitsof_irtype(opnds[i].type);
|
|
opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
|
|
opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
|
|
|
|
/* Set the value of the 2nd operand to something != 0. So division
|
|
won't crash. */
|
|
memset(&opnds[1].value, 0xff, sizeof opnds[1].value);
|
|
|
|
/* For immediate shift amounts choose a value of '1'. That should
|
|
not cause a problem. */
|
|
if (op->shift_amount_is_immediate)
|
|
opnds[1].value.u8 = 1;
|
|
|
|
for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
|
|
opnds[i].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[i].type));
|
|
|
|
valgrind_execute_test(op, data);
|
|
|
|
check_result_for_binary(op, data);
|
|
|
|
tests_done++;
|
|
}
|
|
}
|
|
return tests_done;
|
|
}
|