1
0
mirror of https://github.com/halleysfifthinc/Toyota-AVC-LAN synced 2025-06-07 16:06:12 +00:00
Toyota-AVC-LAN/AVCLanDriver.c
2015-07-20 11:10:47 -07:00

1056 lines
32 KiB
C

/*--------------------------------------------------------------------------------------------------
Name : AVCLanDriver.c
Description : AVC Lan driver for Toyota devices.
Author : Louis Frigon
Copyright : (c) 2007 SigmaObjects
----------------------------------------------------------------------------------------------------
AVC LAN Theory
The AVC bus is an implementation of the IEBus which is a differential line, floating on logical
level '1' and driving on logical '0'. Floating level shall be below 20 mV whereas driving level
shall be above 120 mV.
The diagram below represents how things work from a logical perspective on the bus.
A rising edge indicates a new bit. The duration of the high state tells whether it is a start
bit (~165 us), a bit '0' (~30 us) or a bit '1' (~20 us). A normal bit length is close to 40 us.
|<---- Bit '0' ---->|<---- Bit '1' ---->|
Physical '1' ,---------------, ,---------, ,---------
^ | ^ | ^
Physical '0' -----' '---' '---------'--------- Idle low
|---- 32 us ----| 7 |- 20 us -|- 19 us -|
A bit '1' is typically 20 us high followed by 19 us low.
A bit '0' is typically 32 us high followed by 7 us low. A bit '0' is dominant i.e. it takes
precedence over a '1' by extending the pulse. This is why lower addresses win on arbitration.
A start bit is typically 165 us high followed by 30 us low.
AVC LAN Frame Format
Bits Description
1 Start bit
1 MSG_NORMAL
12 Master address
1 Parity
12 Slave address
1 Parity
1 * Acknowledge * (read below)
4 Control
1 Parity
1 * Acknowledge * (read below)
8 Payload length (n)
1 Parity
1 * Acknowledge * (read below)
8 Data
1 Parity
1 * Acknowledge * (read below)
repeat 'n' times
In point-to-point communication, sender issues an ack bit with value '1' (20 us). Receiver
upon acking will extend the bit until it looks like a '0' (32 us) on the bus. In broadcast
mode, receiver disregards the bit.
An acknowledge bit of value '0' means OK, '1' means no ack.
--------------------------------------------------------------------------------------------------*/
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <stdio.h>
#include "GlobalDef.h"
#include "USART.h"
#include "AVCLanDriver.h"
/*--------------------------------------------------------------------------------------------------
Local Functions
--------------------------------------------------------------------------------------------------*/
static void SendStartBit ( void );
static void Send12BitWord ( word data );
static void Send8BitWord ( byte data );
static void Send4BitWord ( byte data );
static void Send1BitWord ( bool data );
static bool SendMessage ( void );
static word ReadBits ( byte nbBits );
static bool ReadAcknowledge ( void );
static bool HandleAcknowledge ( void );
static bool IsAvcBusFree ( void );
static AvcActionID GetActionID ( void );
static void LoadDataInGlogalRegisters ( AvcOutMessage * msg );
/*--------------------------------------------------------------------------------------------------
Global Variables
--------------------------------------------------------------------------------------------------*/
// Message frame global registers
static const char * Description;
static bool Broadcast;
static word MasterAddress;
static word SlaveAddress;
static byte Control;
static byte DataSize;
static bool ParityBit;
static byte Data[ 256 ];
bool AUX_Enabled = FALSE;
AvcActionID DeviceEnabled = ACT_NONE;
static AvcInMessage MessageTable [] PROGMEM =
{
/*--------------------------------------------------------------------------------------------------
Head Unit (HU) Messages
0x60 = Tuner ID
0x61 = Tape ID
0x62 = CD ID
0x63 = CD Changer ID (this is what we're emulating)
--------------------------------------------------------------------------------------------------*/
{ ACT_AUX_IN_USE, 4, {0x11, 0x01, 0x45, 0x01}, "AUX in use" },
{ ACT_TUNER_IN_USE, 4, {0x11, 0x01, 0x45, 0x60}, "Tuner in use" },
{ ACT_TAPE_IN_USE, 4, {0x11, 0x01, 0x45, 0x61}, "Tape in use" },
{ ACT_CD_IN_USE, 4, {0x11, 0x01, 0x45, 0x62}, "CD in use" },
{ ACT_NONE, 3, {0x11, 0x01, 0x46}, "No device in use" },
{ ACT_NONE, 3, {0x11, 0x01, 0x20 /* xx */}, "Ping" }, // Get this once every minute in radio off mode. xx increments
{ ACT_TUNER_INFO, 5, {0x60, 0x31, 0xF1, 0x01, 0x01 /* 0x82 (or 0x81) 0x00 xx (1 - CB = 87.7 - 107.9) 0x00 0x00 0x00 0x00 */ /* 81 0 C9 = 107.9 or 107.7*/}, "Tuner Status"},
{ ACT_EJECT_CD, 10, {0x62, 0x31, 0xF1, 0x00, 0x30, 0x01, 0x00, 0x00, 0x00, 0x00, 0x80}, "Eject CD" },
{ ACT_NO_CD, 10, {0x62, 0x31, 0xF1, 0x00, 0xF8, 0x01, 0x01, 0x00, 0x00, 0x00, 0x80}, "No CD" },
// { ACT_CD_INFO, 6, {0x62, 0x31, 0xF1, 0x01, 0x10, 0x01 /* Track #, Min, Sec, 0x00, 0x80 */}, "CD Info: " },
{ACT_FM_AUDIO_STATUS, 4, { 0x74, 0x31, 0xF1, 0x90 /* Volume (0xFF to 0x01 = Low to High), Balance, Fade, Bass, Mid, Treble, 0x00, 0x0F, 0x00, 0x00 */ }, "Audio Status"},
{ACT_AM_AUDIO_STATUS, 4, { 0x74, 0x31, 0xA0, 0x90 /* Volume, Balance, Fade, Bass, Mid, Treble, 0x00, 0x0F, 0x00, 0x00 */ }, "Audio Status"},
{ ACT_STATUS, 3, {0x00, 0x01, 0x0A}, "LAN Status" },
{ ACT_REGISTER, 3, {0x11, 0x01, 0x00}, "LAN Register" },
{ ACT_INIT, 3, {0x11, 0x01, 0x01}, "LAN Restart" },
{ ACT_CHECK, 3, {0x11, 0x01, 0x20}, "LAN Check" },
{ (AvcActionID)FALSE } //possibly should be ACT_NONE
};
const byte MessageTableSize = sizeof( MessageTable ) / sizeof( AvcInMessage );
/*--------------------------------------------------------------------------------------------------
Our (CD) Commands
--------------------------------------------------------------------------------------------------*/
AvcOutMessage CmdReset PROGMEM = { MSG_BCAST, 5, {0x00, 0x00, 0x00, 0x00, 0x00}, "Reset" }; // This causes HU to send ACT_REGISTER
AvcOutMessage CmdRegister PROGMEM = { MSG_NORMAL, 5, {0x00, 0x01, 0x11, 0x10, 0x63}, "Register" };
//AvcOutMessage CmdRegister PROGMEM = { MSG_NORMAL, 5, {0x00, 0x01, 0x11, 0x54, 0x63}, "Toggle HU On/Off" };
//AvcOutMessage CmdRegister PROGMEM = { MSG_NORMAL, 5, {0x00, 0x01, 0x11, 0x54, 0x63}, "Toggle HU On/Off" };
AvcOutMessage CmdEnableAux PROGMEM = { MSG_NORMAL, 5, {0x00, 0x01, 0x11, 0x50, 0x61}, "Enable AUX" };
AvcOutMessage CmdDisableAux PROGMEM = { MSG_NORMAL, 5, {0x00, 0x01, 0x11, 0x51, 0x61}, "Disable AUX" };
/*--------------------------------------------------------------------------------------------------
Name : AvcRegisterMe
Description : Sends registration message to master controller.
Argument(s) : None.
Return value : (bool) -> TRUE if successful else FALSE.
--------------------------------------------------------------------------------------------------*/
bool AvcRegisterMe ( void )
{
Broadcast = MSG_NORMAL;
MasterAddress = MY_ADDRESS;
SlaveAddress = HU_ADDRESS;
Control = CONTROL_FLAGS;
AvcProcessActionID( ACT_REGISTER );
return TRUE;
}
/*--------------------------------------------------------------------------------------------------
Name : AvcReadMessage
Description : Read incoming messages on the AVC LAN bus.
Argument(s) : None.
Return value : (AvcActionID) -> Action ID associated with this message.
--------------------------------------------------------------------------------------------------*/
AvcActionID AvcReadMessage ( void )
{
ReadBits( 1 ); // Start bit.
LedOn();
Broadcast = ReadBits( 1 );
MasterAddress = ReadBits( 12 );
bool p = ParityBit;
if ( p != ReadBits( 1 ) )
{
UsartPutCStr( PSTR("AvcReadMessage: Parity error @ MasterAddress!\r\n") );
return (AvcActionID)FALSE;
}
SlaveAddress = ReadBits( 12 );
p = ParityBit;
if ( p != ReadBits( 1 ) )
{
UsartPutCStr( PSTR("AvcReadMessage: Parity error @ SlaveAddress!\r\n") );
return (AvcActionID)FALSE;
}
bool forMe = ( SlaveAddress == MY_ADDRESS );
// In point-to-point communication, sender issues an ack bit with value '1' (20us). Receiver
// upon acking will extend the bit until it looks like a '0' (32us) on the bus. In broadcast
// mode, receiver disregards the bit.
if ( forMe )
{
// Send ACK.
Send1BitWord( 0 );
}
else
{
ReadBits( 1 );
}
Control = ReadBits( 4 );
p = ParityBit;
if ( p != ReadBits( 1 ) )
{
UsartPutCStr( PSTR("AvcReadMessage: Parity error @ Control!\r\n") );
return (AvcActionID)FALSE;
}
if ( forMe )
{
// Send ACK.
Send1BitWord( 0 );
}
else
{
ReadBits( 1 );
}
DataSize = ReadBits( 8 );
p = ParityBit;
if ( p != ReadBits( 1 ) )
{
UsartPutCStr( PSTR("AvcReadMessage: Parity error @ DataSize!\r\n") );
return (AvcActionID)FALSE;
}
if ( forMe )
{
// Send ACK.
Send1BitWord( 0 );
}
else
{
ReadBits( 1 );
}
byte i;
for ( i = 0; i < DataSize; i++ )
{
Data[i] = ReadBits( 8 );
p = ParityBit;
if ( p != ReadBits( 1 ) )
{
sprintf( UsartMsgBuffer, "AvcReadMessage: Parity error @ Data[%d]\r\n", i );
UsartPutStr( UsartMsgBuffer );
return (AvcActionID)FALSE;
}
if ( forMe )
{
// Send ACK.
Send1BitWord( 0 );
}
else
{
ReadBits( 1 );
}
}
// Dump message on terminal.
if ( forMe ) UsartPutCStr( PSTR("AvcReadMessage: This message is for me!\r\n") );
AvcActionID actionID = GetActionID();
DumpRawMessage( FALSE );
LedOff();
return actionID;
}
/*--------------------------------------------------------------------------------------------------
Name : AvcProcessActionID
Description : Perform processing for given action ID.
Argument(s) : actionID (AvcActionID) -> Action ID to process.
Return value : (bool) -> TRUE if action performed.
--------------------------------------------------------------------------------------------------*/
bool AvcProcessActionID ( AvcActionID actionID )
{
// This function relies on the last received message still being loaded in global registers.
switch ( actionID )
{
case ACT_AUX_IN_USE:
AUX_Enabled = TRUE;
return FALSE;
case ACT_TUNER_IN_USE:
break;
case ACT_TAPE_IN_USE:
break;
// case ACT_FM_AUDIO_STATUS:
// UsartPutStr( (char*)"\r\n-----\r\n" );
// sprintf( UsartMsgBuffer, " FM in use: \r\n" );
// UsartPutStr( UsartMsgBuffer );
// sprintf( UsartMsgBuffer, " Volume: " );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, "%X \r\n", Data[4] );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, " Balance: " );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, "%X \r\n", Data[5] );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, " Fade: " );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, "%X \r\n", Data[6] );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, " Bass: " );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, "%X \r\n", Data[7] );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, " Treble: " );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, "%X \r\n", Data[9] );
// UsartPutStr( UsartMsgBuffer );
//
// UsartPutStr( (char*)"\r\n-----\r\n" );
// break;
// case ACT_AM_AUDIO_STATUS:
// UsartPutStr( (char*)"\r\n-----\r\n" );
// sprintf( UsartMsgBuffer, " AM in use: \r\n" );
// UsartPutStr( UsartMsgBuffer );
// sprintf( UsartMsgBuffer, " Volume: " );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, "%X \r\n", Data[4] );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, " Balance: " );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, "%X \r\n", Data[5] );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, " Fade: " );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, "%X \r\n", Data[6] );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, " Bass: " );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, "%X \r\n", Data[7] );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, " Treble: " );
// UsartPutStr( UsartMsgBuffer );
//
// sprintf( UsartMsgBuffer, "%X \r\n", Data[9] );
// UsartPutStr( UsartMsgBuffer );
//
// UsartPutStr( (char*)"\r\n-----\r\n" );
// break;
// case ACT_TUNER_INFO:
// UsartPutStr( (char*)"\r\n-----\r\n" );
// sprintf( UsartMsgBuffer, " FM Frequency: " );
// UsartPutStr( UsartMsgBuffer );
//
// for ( byte i = 5; i < 8; i++ )
// {
// sprintf( UsartMsgBuffer, "%X ", Data[i] );
// UsartPutStr( UsartMsgBuffer );
// }
//
// UsartPutStr( (char*)"\r\n-----\r\n" );
// break;
case ACT_CD_IN_USE:
DeviceEnabled = actionID;
AUX_Enabled = FALSE;
return FALSE;
// case ACT_NO_CD:
case ACT_EJECT_CD:
// Normal CD eject command.
if ( DeviceEnabled == ACT_CD_IN_USE ) return FALSE;
if ( AUX_Enabled )
{
LoadDataInGlogalRegisters ( &CmdDisableAux );
AUX_Enabled = FALSE;
}
else
{
LoadDataInGlogalRegisters ( &CmdEnableAux );
AUX_Enabled = TRUE;
}
return SendMessage();
break;
case ACT_REGISTER:
LoadDataInGlogalRegisters ( &CmdRegister );
return SendMessage();
break;
default:
// No success!
UsartPutCStr( PSTR("AvcProcessActionID: Unknown action ID!\r\n") );
//POssibly dumpmsgbuffer here for sebuggimng
return FALSE;
}
// Nothing to do!
return FALSE;
}
/*--------------------------------------------------------------------------------------------------
Name : LoadDataInGlogalRegisters
Description : Loads message data in global registers for given mesage ID.
Argument(s) : msg (AvcOutMessage *) -> Message to load.
Return value : None.
--------------------------------------------------------------------------------------------------*/
void LoadDataInGlogalRegisters ( AvcOutMessage * msg )
{
Description = msg->Description;
Broadcast = pgm_read_byte_near( &msg->Mode );
MasterAddress = MY_ADDRESS;
if ( Broadcast == MSG_BCAST )
SlaveAddress = BROADCAST_ADDRESS;
else
SlaveAddress = HU_ADDRESS;
DataSize = pgm_read_byte_near( &msg->DataSize );
for ( byte i = 0; i < DataSize; i++ )
{
Data[i] = pgm_read_byte_near( &msg->Data[i] );
}
}
/*--------------------------------------------------------------------------------------------------
Name : GetActionID
Description : Use the last received message to determine the corresponding action ID.
Argument(s) : None.
Return value : (AvcActionID) -> Action ID corresponding to current message.
--------------------------------------------------------------------------------------------------*/
AvcActionID GetActionID ( void )
{
Description = PSTR("Unknown message!");
// Iterate through all HU messages in table.
for ( byte msg = 0; msg < MessageTableSize; msg++ )
{
bool found = TRUE;
// Identify current message from it's payload data.
for ( byte i = 0; i < pgm_read_byte_near( &MessageTable[msg].DataSize ); i++ )
{
if ( Data[i] != pgm_read_byte_near( &MessageTable[msg].Data[i] ) )
{
found = FALSE;
break;
}
}
if ( found )
{
Description = MessageTable[msg].Description;
// Fetch action corresponding to the message.
AvcActionID actionID = pgm_read_byte_near( &MessageTable[msg].ActionID );
return actionID;
}
}
return ACT_NONE;
}
/*--------------------------------------------------------------------------------------------------
Name : Send12BitWord
Description : Writes a 12 bit word on the AVC LAN bus.
Argument(s) : data (word) -> Data to write.
Return value : None.
--------------------------------------------------------------------------------------------------*/
void Send12BitWord ( word data )
{
ParityBit = 0;
// Most significant bit out first.
for ( char nbBits = 0; nbBits < 12; nbBits++ )
{
// Reset timer to measure bit length.
TCNT0 = 0;
// Drive output to signal high.
DDRD |= _BV(PD2) | _BV(PD3);
if ( data & 0x0800 )
{
// Adjust parity.
ParityBit = ! ParityBit;
while ( TCNT0 < BIT_1_HOLD_ON_LENGTH );
}
else
{
while ( TCNT0 < BIT_0_HOLD_ON_LENGTH );
}
// Release output.
DDRD &= ~( _BV(PD2) | _BV(PD3) );
// Hold output low until end of bit.
while ( TCNT0 < NORMAL_BIT_LENGTH );
// Fetch next bit.
data <<= 1;
}
}
/*--------------------------------------------------------------------------------------------------
Name : Send8BitWord
Description : Writes an 8 bit word on the AVC LAN bus.
Argument(s) : data (byte) -> Data to write.
Return value : None.
--------------------------------------------------------------------------------------------------*/
void Send8BitWord ( byte data )
{
ParityBit = 0;
// Most significant bit out first.
for ( char nbBits = 0; nbBits < 8; nbBits++ )
{
// Reset timer to measure bit length.
TCNT0 = 0;
// Drive output to signal high.
DDRD |= _BV(PD2) | _BV(PD3);
if ( data & 0x80 )
{
// Adjust parity.
ParityBit = ! ParityBit;
while ( TCNT0 < BIT_1_HOLD_ON_LENGTH );
}
else
{
while ( TCNT0 < BIT_0_HOLD_ON_LENGTH );
}
// Release output.
DDRD &= ~( _BV(PD2) | _BV(PD3) );
// Hold output low until end of bit.
while ( TCNT0 < NORMAL_BIT_LENGTH );
// Fetch next bit.
data <<= 1;
}
}
/*--------------------------------------------------------------------------------------------------
Name : Send4BitWord
Description : Writes a 4 bit word on the AVC LAN bus.
Argument(s) : data (byte) -> Data to write.
Return value : None.
--------------------------------------------------------------------------------------------------*/
void Send4BitWord ( byte data )
{
ParityBit = 0;
// Most significant bit out first.
for ( char nbBits = 0; nbBits < 4; nbBits++ )
{
// Reset timer to measure bit length.
TCNT0 = 0;
// Drive output to signal high.
DDRD |= _BV(PD2) | _BV(PD3);
if ( data & 0x8 )
{
// Adjust parity.
ParityBit = ! ParityBit;
while ( TCNT0 < BIT_1_HOLD_ON_LENGTH );
}
else
{
while ( TCNT0 < BIT_0_HOLD_ON_LENGTH );
}
// Release output.
DDRD &= ~( _BV(PD2) | _BV(PD3) );
// Hold output low until end of bit.
while ( TCNT0 < NORMAL_BIT_LENGTH );
// Fetch next bit.
data <<= 1;
}
}
/*--------------------------------------------------------------------------------------------------
Name : Send1BitWord
Description : Writes a 1 bit word on the AVC LAN bus.
Argument(s) : data (bool) -> Data to write.
Return value : None.
--------------------------------------------------------------------------------------------------*/
void Send1BitWord ( bool data )
{
// Reset timer to measure bit length.
TCNT0 = 0;
// Drive output to signal high.
DDRD |= _BV(PD2) | _BV(PD3);
if ( data )
{
while ( TCNT0 < BIT_1_HOLD_ON_LENGTH );
}
else
{
while ( TCNT0 < BIT_0_HOLD_ON_LENGTH );
}
// Release output.
DDRD &= ~( _BV(PD2) | _BV(PD3) );
// Pulse level low duration until 40 us.
while ( TCNT0 < NORMAL_BIT_LENGTH );
}
/*--------------------------------------------------------------------------------------------------
Name : SendStartBit
Description : Writes a start bit on the AVC LAN bus.
Argument(s) : None.
Return value : None.
--------------------------------------------------------------------------------------------------*/
void SendStartBit ( void )
{
// Reset timer to measure bit length.
TCNT0 = 0;
// Drive output to signal high.
DDRD |= _BV(PD2) | _BV(PD3);
// Pulse level high duration.
while ( TCNT0 < START_BIT_HOLD_ON_LENGTH );
// Release output.
DDRD &= ~( _BV(PD2) | _BV(PD3) );
// Pulse level low duration until ~185 us.
while ( TCNT0 < START_BIT_LENGTH );
}
/*--------------------------------------------------------------------------------------------------
Name : ReadBits
Description : Reads specified number of bits from the AVC LAN bus.
Argument(s) : nbBits (byte) -> Number of bits to read.
Return value : (word) -> Data value read.
|<---- Bit '0' ---->|<---- Bit '1' ---->|
Physical '1' ,---------------, ,---------, ,---------
^ | ^ | ^
Physical '0' -----' '---' '---------'--------- Idle low
|---- 32 us ----| 7 |- 20 us -|- 19 us -|
--------------------------------------------------------------------------------------------------*/
word ReadBits ( byte nbBits )
{
word data = 0;
ParityBit = 0;
while ( nbBits-- > 0 )
{
// Insert new bit
data <<= 1;
// Wait until rising edge of new bit.
while ( INPUT_IS_CLEAR )
{
// Reset watchdog.
wdt_reset();
}
// Reset timer to measure bit length.
TCNT0 = 0;
// Wait until falling edge.
while ( INPUT_IS_SET );
// Compare half way between a '1' (20 us) and a '0' (32 us ): 32 - (32 - 20) /2 = 26 us
if ( TCNT0 < BIT_0_HOLD_ON_LENGTH - (BIT_0_HOLD_ON_LENGTH - BIT_1_HOLD_ON_LENGTH) / 2 )
{
// Set new bit.
data |= 0x0001;
// Adjust parity.
ParityBit = ! ParityBit;
}
}
return data;
}
/*--------------------------------------------------------------------------------------------------
Name : SendMessage
Description : Sends the message in global registers on the AVC LAN bus.
Argument(s) : None.
Return value : (bool) -> TRUE if successful else FALSE.
--------------------------------------------------------------------------------------------------*/
bool SendMessage ( void )
{
while ( ! IsAvcBusFree() );
// At this point we know the bus is available.
LedOn();
// Send start bit.
SendStartBit();
// Broadcast bit.
Send1BitWord( Broadcast );
// Master address = me.
Send12BitWord( MasterAddress );
Send1BitWord( ParityBit );
// Slave address = head unit (HU).
Send12BitWord( SlaveAddress );
Send1BitWord( ParityBit );
if ( ! HandleAcknowledge() )
{
DumpRawMessage( FALSE );
UsartPutStr( (char*)"SendMessage: No Ack @ Slave address\r\n" );
return FALSE;
}
// Control flag + parity.
Send4BitWord( Control );
Send1BitWord( ParityBit );
if ( ! HandleAcknowledge() )
{
DumpRawMessage( FALSE );
UsartPutStr( (char*)"SendMessage: No Ack @ Control\r\n" );
return FALSE;
}
// Data length + parity.
Send8BitWord( DataSize );
Send1BitWord( ParityBit );
if ( ! HandleAcknowledge() )
{
DumpRawMessage( FALSE );
UsartPutStr( (char*)"SendMessage: No Ack @ DataSize\r\n" );
return FALSE;
}
for ( byte i = 0; i < DataSize; i++ )
{
Send8BitWord( Data[i] );
Send1BitWord( ParityBit );
if ( ! HandleAcknowledge() )
{
DumpRawMessage( FALSE );
sprintf( UsartMsgBuffer, "SendMessage: No Ack @ Data[%d]\r\n", i );
UsartPutStr( UsartMsgBuffer );
return FALSE;
}
}
DumpRawMessage( FALSE );
LedOff();
return TRUE;
}
/*--------------------------------------------------------------------------------------------------
Name : ReadAcknowledge
Description : Reads the acknowledge bit the AVC LAN bus.
Argument(s) : None.
Return value : (bool) -> TRUE if ack detected else FALSE.
--------------------------------------------------------------------------------------------------*/
inline bool ReadAcknowledge ( void )
{
// The acknowledge pattern is very tricky: the sender shall drive the bus for the equivalent
// of a bit '1' (20 us) then release the bus and listen. At this point the target shall have
// taken over the bus maintaining the pulse until the equivalent of a bit '0' (32 us) is formed.
// Reset timer to measure bit length.
TCNT0 = 0;
// Drive output to signal high.
DDRD |= _BV(PD2) | _BV(PD3);
// Generate bit '0'.
while ( TCNT0 < BIT_1_HOLD_ON_LENGTH );
// Release output.
DDRD &= ~( _BV(PD2) | _BV(PD3) );
// Measure final resulting bit.
while ( INPUT_IS_SET );
// Sample half-way through bit '0' (26 us) to detect whether the target is acknowledging.
if ( TCNT0 > BIT_0_HOLD_ON_LENGTH - (BIT_0_HOLD_ON_LENGTH - BIT_1_HOLD_ON_LENGTH) / 2 )
{
// Slave is acknowledging (ack = 0). Wait until end of ack bit.
while ( INPUT_IS_SET );
return TRUE;
}
// No sign of life on the bus.
return FALSE;
}
/*--------------------------------------------------------------------------------------------------
Name : HandleAcknowledge
Description : Sends ack bit if I am broadcasting otherwise wait and return received ack bit.
Argument(s) : None.
Return value : (bool) -> FALSE if ack bit not detected.
--------------------------------------------------------------------------------------------------*/
bool HandleAcknowledge ( void )
{
if ( Broadcast == MSG_BCAST )
{
// Acknowledge.
Send1BitWord( 0 );
return TRUE;
}
// Return acknowledge bit.
return ReadAcknowledge();
}
/*--------------------------------------------------------------------------------------------------
Name : IsAvcBusFree
Description : Determine whether the bus is free (no tx/rx).
Argument(s) : None.
Return value : (bool) -> TRUE is bus is free.
--------------------------------------------------------------------------------------------------*/
bool IsAvcBusFree ( void )
{
// Reset timer.
TCNT0 = 0;
while ( INPUT_IS_CLEAR )
{
// We assume the bus is free if anything happens for the length of 1 bit.
if ( TCNT0 > NORMAL_BIT_LENGTH )
{
return TRUE;
}
}
return FALSE;
}
/*--------------------------------------------------------------------------------------------------
Name : DumpRawMessage
Description : Dumps raw content of message registers on the terminal.
Argument(s) : incoming (bool) -> TRUE means incoming data, FALSE means outgoing.
Return value : None.
--------------------------------------------------------------------------------------------------*/
void DumpRawMessage ( bool incoming )
{
// Dump message on terminal.
if ( incoming )
UsartPutCStr( PSTR("\r\nAUX Enabler <<--- HU\r\n") );
else
UsartPutCStr( PSTR("\r\nAUX Enabler --->> HU\r\n") );
UsartPutCStr( PSTR(" Description: ") );
UsartPutCStr( Description );
UsartPutCStr( PSTR("\r\n") );
sprintf( UsartMsgBuffer, " Broadcast: %d \r\n", Broadcast );
UsartPutStr( UsartMsgBuffer );
sprintf( UsartMsgBuffer, " Master address: 0x%X \r\n", MasterAddress );
UsartPutStr( UsartMsgBuffer );
sprintf( UsartMsgBuffer, " Slave address: 0x%X \r\n", SlaveAddress );
UsartPutStr( UsartMsgBuffer );
sprintf( UsartMsgBuffer, " Control: 0x%X \r\n", Control );
UsartPutStr( UsartMsgBuffer );
sprintf( UsartMsgBuffer, " Data size: %d \r\n", DataSize );
UsartPutStr( UsartMsgBuffer );
sprintf( UsartMsgBuffer, " Data: " );
UsartPutStr( UsartMsgBuffer );
for ( byte i = 0; i < DataSize; i++ )
{
sprintf( UsartMsgBuffer, "%X ", Data[i] );
UsartPutStr( UsartMsgBuffer );
}
UsartPutStr( (char*)"\r\n-----\r\n" );
}
/*--------------------------------------------------------------------------------------------------
Name : LedOn
Description : Turn LED on (active low signal).
Argument(s) : None.
Return value : None.
--------------------------------------------------------------------------------------------------*/
inline void LedOn ( void )
{
LED_PORT &= ~LEDOUT;
}
/*--------------------------------------------------------------------------------------------------
Name : LedOff
Description : Turn LED off (active low signal).
Argument(s) : None.
Return value : None.
--------------------------------------------------------------------------------------------------*/
inline void LedOff ( void )
{
LED_PORT |= LEDOUT;
}
/*--------------------------------------------------------------------------------------------------
End of file.
--------------------------------------------------------------------------------------------------*/