mirror of
https://github.com/ChristopherA/Learning-Bitcoin-from-the-Command-Line.git
synced 2025-06-08 00:16:26 +00:00
Update 9_3_Using_CSV_in_Scripts.md
This commit is contained in:
parent
eaace83745
commit
c455f1e123
@ -8,30 +8,59 @@
|
||||
|
||||
## Understand nSequence
|
||||
|
||||
Every UTXO used in a transaction has an `nSequence` (or if you prefer `sequence`) value. It's been a prime tool for Bitcoin expansions as discussed previously in [§5.2: Resending a Transaction with RBF](5_2_Resending_a_Transaction_with_RBF.md) and [§6.4 Sending a Transaction with a Locktime.md](6_4_Sending_a_Transaction_with_a_Locktime.md), where it was used to signal RBF and `nLockTime`, respectively. However, there's one more use `nSequence`, which was described by [BIP 68](https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki): you can use it to create a relative timelock on a transaction.
|
||||
Every UTXO used in a transaction has an `nSequence` (or if you prefer `sequence`) value. It's been a prime tool for Bitcoin expansions as discussed previously in [§5.2: Resending a Transaction with RBF](5_2_Resending_a_Transaction_with_RBF.md) and [§6.4 Sending a Transaction with a Locktime.md](6_4_Sending_a_Transaction_with_a_Locktime.md), where it was used to signal RBF and `nLockTime`, respectively. However, there's one more use for `nSequence`, described by [BIP 68](https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki): you can use it to create a relative timelock on a transaction.
|
||||
|
||||
A relative timelock is a lock that's placed on a specific input of a transaction and that's calculated in relation to the mining date of that transaction. For example, if a UTXO was mined at block #468260 and a transaction was created where the input for that UTXO was given an `nSequence` of 100, then the new transaction could not be mined until at least block #468360.
|
||||
A relative timelock is a lock that's placed on a specific input of a transaction and that's calculated in relation to the mining date of that UTXO. For example, if a UTXO was mined at block #468260 and a transaction was created where the input for that UTXO was given an `nSequence` of 100, then the new transaction could not be mined until at least block #468360.
|
||||
|
||||
Easy!
|
||||
|
||||
> **WARNING:** `nSequence` is only interpreted as a relative timelock if the transaction is marked with `nVersion` of 2 or more. This is default for Bitcoin Core starting with version 0.14.0.
|
||||
|
||||
> **SEQUENCE NOTE (III):** This is the third use of the `nSequence` value in Bitcoin. Any `nSequence` value from 1 to 0xf0000000-1 will be interpreted as a relative timelock if `nVersion ≥ 2`. You should be careful to ensure that relative timelocks don't conflict with the other two uses of `nSequence`, for signalling `nTimeLock` and RBF. `nTimeLock` usually sets a value of 0xffffffff-1, where only `nTimeLock` is allowed of the three; and RBF usually sets a value of "1", where RBF and `nTimeLock` are both allowed and where a relative timelock is irrelevent, because it defines a timelock of 1 block. In general, remember: a `nVersion` value of 2 and a `nSequence` value of 0x00000001 to 0xf0000000-1 allows relative timelock, RBF, and `nTimeLock`; a `nSequence` value of 0xf0000000 to 0xffffffff-2 allows RBF and `nTimeLock`; a `nSequence` value of 0xffffffff-1 allows only `nTimeLock`; a `nSequence` value of 0xffffffff allows none; and `nVersion` can be set to 1 to disallow relative timelocks for any value of `nSequence`. Whew!
|
||||
> **SEQUENCE NOTE (III):** This is the third use of the `nSequence` value in Bitcoin. Any `nSequence` value from 1 to 0xf0000000-1 will be interpreted as a relative timelock if `nVersion ≥ 2` (which was the default starting in Bitcoin Core 0.14.0). You should be careful to ensure that relative timelocks don't conflict with the other two uses of `nSequence`, for signalling `nTimeLock` and RBF. `nTimeLock` usually sets a value of 0xffffffff-1, where a relative timelock is disallowed; and RBF usually sets a value of "1", where a relative timelock is irrelevent, because it defines a timelock of 1 block. In general, remember: with a `nVersion` value of 2, a `nSequence` value of 0x00000001 to 0xf0000000-1 allows relative timelock, RBF, and `nTimeLock`; a `nSequence` value of 0xf0000000 to 0xffffffff-2 allows RBF and `nTimeLock`; a `nSequence` value of 0xffffffff-1 allows only `nTimeLock`; a `nSequence` value of 0xffffffff allows none; and `nVersion` can be set to 1 to disallow relative timelocks for any value of `nSequence`. Whew!
|
||||
|
||||
### Create a CSV Relative Block Time
|
||||
|
||||
The format for using `nSequence` to represent relative time locks is defined in [BIP 68](https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki) and is slightly more complex than just inputting a number, like you did for `nTimeLock`. Instead, the BIP sepecification breaks up the four byte number into three parts:
|
||||
The format for using `nSequence` to represent relative time locks is defined in [BIP 68](https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki) and is slightly more complex than just inputting a number, like you did for `nTimeLock`. Instead, the BIP specifications breaks up the four byte number into three parts:
|
||||
|
||||
* The first two bytes are used to specify a relative locktime.
|
||||
* The 23rd bit is used to signal if the lock refers to a time rather than a blockheight.
|
||||
* The 32nd bit is used to signal if relative timelocks are deactivated.
|
||||
|
||||
If you want to create a block-based relative timelock, the construction is still quite easy
|
||||
|
||||
If you want to create a block-based relative timelock, the construction is still quite easy: you set `nSequence` to a value between 1 and 0xffff (65535). The new transaction can be mined that numebr of blocks after the associated UTXO was mined.
|
||||
|
||||
### Create a CSV Relative Time
|
||||
|
||||
[WARNING: NOT REALLY USED]
|
||||
You can instead set `nSequence` as a relative time, where the lock lasts for 512 seconds time the value of `nSequence`.
|
||||
|
||||
In order to do that:
|
||||
|
||||
1. Decide how far in the future to set your relative timelock.
|
||||
2. Convert that to seconds.
|
||||
3. Divide by 512.
|
||||
4. Round that value up or down and set it as `nSequence`.
|
||||
5. Set bit 23 to true.
|
||||
|
||||
To set a time 6 months n the future, you would first calculate as follows:
|
||||
```
|
||||
$ seconds=$((6*30*24*60*60))
|
||||
$ nvalue=$(($seconds/512))
|
||||
$ hexvalue=$(printf '%x\n' $nvalue)
|
||||
$ relativevalue=$(printf '%x\n' $((0x$hexvalue | 0x400000)))
|
||||
$ echo $relativevalue
|
||||
4224679
|
||||
```
|
||||
If you convert that back you'll see that 4224679 = 10000000111011010100111. The 23rd digit is set to a "1" and the first 2 bytes, 0111011010100111, convert to 76A7 in hex or 30375 in decimal. Multiply that by 512 and you get 15.55 million seconds, which indeed is 180 days.
|
||||
|
||||
## Create a Transaction with a Relative Timelock
|
||||
|
||||
So you want to create a relative timelock? All you have to do is issue a tranaction where the `nSequence` in an input is set in accordance with the above: with the `nSequence` for that input set such that the first two bytes define the timelock, the 23rd bit defines the type of timelock, and the 32nd bit is set to false. It's a straight up two-byte number for a timelock based on relative blockheight and it's a two-byte number `0x400000` for a timelock based on relative time.
|
||||
|
||||
Issue the transaction, but it can't legally be mined until enough blocks or enough time has passed beyond the time that the transaction forming the UTXO was mined.
|
||||
|
||||
Except pretty much no one does this. The new [BIP 68](https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki) definitions for `nSequence` were incorporated into Bitcoin Core at the same time as [BIP 112](https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki) which describes the CSV opcode, which works with `nSequence`, just like the CLTV opcode works with `nTimeLock`. Just like CLTV, CSV offers increased capabilities. So almost all usage of relative timelocks has been with the CSV opcode, not with the raw `nSequence` value on its own.
|
||||
|
||||
| | Absolute Timelock | Relative Timelock |
|
||||
|------------------|-------------------|-------------------|
|
||||
| Lock Transaction | nTimeLock | nSequence |
|
||||
| Lock Output | OP_CHECKLOCKTIMEVERIFY| OP_CHECKSEQUENCEVERIFY |
|
||||
|
||||
## Understand the CSV Opcode
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user