Update 08_1_Sending_a_Transaction_with_a_Locktime.md

This commit is contained in:
Joe Gesualdo 2022-06-30 11:23:33 -04:00 committed by GitHub
parent 70f731609c
commit bfe10b20d7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -6,13 +6,13 @@ The previous chapters showed two different ways to send funds from multiple mach
When you create a locktime transaction, you lock it with a number that represents either a block height (if it's a small number) or a UNIX timestamp (if it's a big number). This tells the Bitcoin network that the transaction may not be put into a block until either the specified time has arrived or the blockchain has reached the specified height.
> :book: _What is block height?_ It's the total count of blocks in the chain, going back to the genesis block for Bitcoin.
> :book: **_What is block height?_** It's the total count of blocks in the chain, going back to the genesis block for Bitcoin.
When a locktime transaction is waiting to go into a block, it can be cancelled. This means that it is far, far from finalized. In fact, the ability to cancel is the whole purpose of a locktime transaction.
> :book: _What is nLockTime?_ It's the same thing as locktime. More specifically, it's what locktime is called internal to the Bitcoin Core source code.
> :book: **_What is nLockTime?_** It's the same thing as locktime. More specifically, it's what locktime is called internal to the Bitcoin Core source code.
> :book: _What is Timelock?_ Locktime is just one way to lock Bitcoin transactions until some point in the future; collectively these methods are called timelocks. Locktime is the most basic timelock method. It locks an entire transaction with an absolute time, and it's available through `bitcoin-cli` (which is why it's the only timelock covered in this section). A parallel method, which locks a transaction with a relative time, is defined in [BIP 68](https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki) and covered in [§11.3: Using CSV in Scripts](11_3_Using_CSV_in_Scripts.md).
> :book: **_What is Timelock?_** Locktime is just one way to lock Bitcoin transactions until some point in the future; collectively these methods are called timelocks. Locktime is the most basic timelock method. It locks an entire transaction with an absolute time, and it's available through `bitcoin-cli` (which is why it's the only timelock covered in this section). A parallel method, which locks a transaction with a relative time, is defined in [BIP 68](https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki) and covered in [§11.3: Using CSV in Scripts](11_3_Using_CSV_in_Scripts.md).
> Bitcoin Script further empowers both sorts of timelocks, allowing for the locking of individual outputs instead of entire transactions. Absolute timelocks (such as Locktime) are linked to the Script opcode OP_CHECKLOCKTIMEVERIFY, which is defined in [BIP 65](https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki) and covered in [§11.2: Using CLTV in Scripts](11_2_Using_CLTV_in_Scripts.md), while relative timelocks (such as Timelock) are linked to the Script opcode OP_CHECKSEQUENCEVERIFY, which is defined in [BIP 112](https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki) and also covered in [§11.3](11_3_Using_CSV_in_Scripts.md).
@ -24,7 +24,7 @@ In order to create a locktime transaction, you need to first determine what you
Most frequently you will set the locktime to a UNIX timestamp representing a specific date and time. You can calculate a UNIX timestamp at a web site like [UNIX Time Stamp](http://www.unixtimestamp.com/) or [Epoch Convertor](https://www.epochconverter.com/). However, it would be better to [write your own script](https://www.epochconverter.com/#code) on your local machine, so that you know the UNIX timestamp you receive is accurate. If you don't do that, at least double check on two different sites.
> :book: _Why Would I Use a UNIX Timestamp?_ Using a UNIX timestamp makes it easy to definitively link a transaction to a specific time, without worrying about whether the speed of block creation might change at some point. Particularly if you're creating a locktime that's far in the future, it's the safer thing to do. But, beyond that, it's just more intuitive, creating a direct correlation between some calendar date and the time when the transaction can be mined.
> :book: **_Why Would I Use a UNIX Timestamp?_** Using a UNIX timestamp makes it easy to definitively link a transaction to a specific time, without worrying about whether the speed of block creation might change at some point. Particularly if you're creating a locktime that's far in the future, it's the safer thing to do. But, beyond that, it's just more intuitive, creating a direct correlation between some calendar date and the time when the transaction can be mined.
> :warning: **WARNING:** Locktime with UNIX timestamps has a bit of wriggle room: the release of blocks isn't regular and block times can be two hours ahead of real time, so a locktime actually means "within a few hours of this time, plus or minus".
@ -34,7 +34,7 @@ Alternatively, you can set the locktime to a smaller number representing a block
Once you've figured out the current height, you can decide how far in the future to set your locktime to. Remember that on average a new block will be created every 10 minutes. So, for example, if you wanted to set the locktime to a week in the future, you'd choose a block height that is 6 x 24 x 7 = 1,008 blocks in advance of the current one.
> :book: _Why Would I Use a Blockheight?_ Unlike with timestamps, there's no fuzziness for blockheights. If you set a blockheight of 120,000 for your locktime, then there's absolutely no way for it to go into block 119,999. This can make it easier to algorithmically control your locktimed transaction. The downside is that you can't be as sure of when precisely the locktime will be.
> :book: **_Why Would I Use a Blockheight?_** Unlike with timestamps, there's no fuzziness for blockheights. If you set a blockheight of 120,000 for your locktime, then there's absolutely no way for it to go into block 119,999. This can make it easier to algorithmically control your locktimed transaction. The downside is that you can't be as sure of when precisely the locktime will be.
> :warning: **WARNING:** If you want to set a block-height locktime, you must set the locktime to less than 500 million. If you set it to 500 million or over, your number will instead be interpreted as a timestamp. Since the UNIX timestamp of 500 million was November 5, 1985, that probably means that your transaction will be put into a block at the miners' first opportunity.
@ -128,7 +128,7 @@ Cancelling a locktime transaction is _very_ simple: you send a new transactions
Locktime offers a way to create a transaction that _should_ not be relayable to the network and that _will_ not be accepted into a block until the appropriate time has arrived. In the meantime, it can be cancelled simply by reusing a UTXO.
> :fire: _What is the Power of Locktime?_ The power of locktime may not be immediately obvious because of the ability to cancel it so easily. However, it's another of the bases of Smart Contracts: it has a lot of utility in a variety of custodial or contractual applications. For example, consider a situation where a third party is holding your bitcoins. In order to guarantee the return of your bitcoins if the custodian ever disappeared, they could produce a timelock transaction to return the coins to you, then update that every once in a while with a new one, further in the future. If they ever failed to update, then the coins would return to you when the current timelock expired. Locktime could similarly be applied to a payment network, where the network holds coins while they're being exchanged by network participants. Finally, a will offers an example of a more complex contract, where payments are sent out to a number of people. These payments would be built on locktime transactions, and would be continually updated as long as the owner continues to show signs of life. (The unifying factor of all of these applications is, of course, _trust_. Simple locktime transactions only work if the holder of the coins can be trusted to send them out under the appropriate conditions.)
> :fire: **_What is the Power of Locktime?_** The power of locktime may not be immediately obvious because of the ability to cancel it so easily. However, it's another of the bases of Smart Contracts: it has a lot of utility in a variety of custodial or contractual applications. For example, consider a situation where a third party is holding your bitcoins. In order to guarantee the return of your bitcoins if the custodian ever disappeared, they could produce a timelock transaction to return the coins to you, then update that every once in a while with a new one, further in the future. If they ever failed to update, then the coins would return to you when the current timelock expired. Locktime could similarly be applied to a payment network, where the network holds coins while they're being exchanged by network participants. Finally, a will offers an example of a more complex contract, where payments are sent out to a number of people. These payments would be built on locktime transactions, and would be continually updated as long as the owner continues to show signs of life. (The unifying factor of all of these applications is, of course, _trust_. Simple locktime transactions only work if the holder of the coins can be trusted to send them out under the appropriate conditions.)
## What's Next?