diff --git a/10_5_Scripting_a_Segwit_Script.md b/10_5_Scripting_a_Segwit_Script.md index 21e4cac..85cdc26 100644 --- a/10_5_Scripting_a_Segwit_Script.md +++ b/10_5_Scripting_a_Segwit_Script.md @@ -36,7 +36,7 @@ $ bitcoin-cli listunspent "safe": true } ``` -More importantly, there's a `redeemScript`, which decodes to `OP_0 OP_PUSHDATA (20 bytes) 3ab2a09a1a5f2feb6c799b5ab345069a96e1a0a`. The should look familiar, because it's an `OP_0` followed by 20-byte hexcode of a public key hash. In other words, a P2SH-SegWit is just a SegWit `scriptPubKey` jammed into a script. That's all there is to it. It precisely matches how modern multisigs are a multsig jammed into a P2SH, as discussed in [§10.4: Scripting a Multisig](10_4_Scripting_a_Multisig.md). +More importantly, there's a `redeemScript`, which decodes to `OP_0 OP_PUSHDATA (20 bytes) 3ab2a09a1a5f2feb6c799b5ab345069a96e1a0a`. This should look familiar, because it's an `OP_0` followed by 20-byte hexcode of a public key hash. In other words, a P2SH-SegWit is just a SegWit `scriptPubKey` jammed into a script. That's all there is to it. It precisely matches how modern multisigs are a multsig jammed into a P2SH, as discussed in [§10.4: Scripting a Multisig](10_4_Scripting_a_Multisig.md). The raw transaction reveals a bit more when you look at the `vout` `1`: ```