mirror of
				https://github.com/JKorf/CryptoExchange.Net
				synced 2025-10-30 18:07:42 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			229 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			229 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| /*
 | |
| Language: Stan
 | |
| Description: The Stan probabilistic programming language
 | |
| Author: Jeffrey B. Arnold <jeffrey.arnold@gmail.com>
 | |
| Website: http://mc-stan.org/
 | |
| Category: scientific
 | |
| */
 | |
| 
 | |
| export default function(hljs) {
 | |
|   // variable names cannot conflict with block identifiers
 | |
|   var BLOCKS = [
 | |
|     'functions',
 | |
|     'model',
 | |
|     'data',
 | |
|     'parameters',
 | |
|     'quantities',
 | |
|     'transformed',
 | |
|     'generated'
 | |
|   ];
 | |
|   var STATEMENTS = [
 | |
|     'for',
 | |
|     'in',
 | |
|     'if',
 | |
|     'else',
 | |
|     'while',
 | |
|     'break',
 | |
|     'continue',
 | |
|     'return'
 | |
|   ];
 | |
|   var SPECIAL_FUNCTIONS = [
 | |
|     'print',
 | |
|     'reject',
 | |
|     'increment_log_prob|10',
 | |
|     'integrate_ode|10',
 | |
|     'integrate_ode_rk45|10',
 | |
|     'integrate_ode_bdf|10',
 | |
|     'algebra_solver'
 | |
|   ];
 | |
|   var VAR_TYPES = [
 | |
|     'int',
 | |
|     'real',
 | |
|     'vector',
 | |
|     'ordered',
 | |
|     'positive_ordered',
 | |
|     'simplex',
 | |
|     'unit_vector',
 | |
|     'row_vector',
 | |
|     'matrix',
 | |
|     'cholesky_factor_corr|10',
 | |
|     'cholesky_factor_cov|10',
 | |
|     'corr_matrix|10',
 | |
|     'cov_matrix|10',
 | |
|     'void'
 | |
|   ];
 | |
|   var FUNCTIONS = [
 | |
|     'Phi', 'Phi_approx', 'abs', 'acos', 'acosh', 'algebra_solver', 'append_array',
 | |
|     'append_col', 'append_row', 'asin', 'asinh', 'atan', 'atan2', 'atanh',
 | |
|     'bernoulli_cdf', 'bernoulli_lccdf', 'bernoulli_lcdf', 'bernoulli_logit_lpmf',
 | |
|     'bernoulli_logit_rng', 'bernoulli_lpmf', 'bernoulli_rng', 'bessel_first_kind',
 | |
|     'bessel_second_kind', 'beta_binomial_cdf', 'beta_binomial_lccdf',
 | |
|     'beta_binomial_lcdf', 'beta_binomial_lpmf', 'beta_binomial_rng', 'beta_cdf',
 | |
|     'beta_lccdf', 'beta_lcdf', 'beta_lpdf', 'beta_rng', 'binary_log_loss',
 | |
|     'binomial_cdf', 'binomial_coefficient_log', 'binomial_lccdf', 'binomial_lcdf',
 | |
|     'binomial_logit_lpmf', 'binomial_lpmf', 'binomial_rng', 'block',
 | |
|     'categorical_logit_lpmf', 'categorical_logit_rng', 'categorical_lpmf',
 | |
|     'categorical_rng', 'cauchy_cdf', 'cauchy_lccdf', 'cauchy_lcdf', 'cauchy_lpdf',
 | |
|     'cauchy_rng', 'cbrt', 'ceil', 'chi_square_cdf', 'chi_square_lccdf',
 | |
|     'chi_square_lcdf', 'chi_square_lpdf', 'chi_square_rng', 'cholesky_decompose',
 | |
|     'choose', 'col', 'cols', 'columns_dot_product', 'columns_dot_self', 'cos',
 | |
|     'cosh', 'cov_exp_quad', 'crossprod', 'csr_extract_u', 'csr_extract_v',
 | |
|     'csr_extract_w', 'csr_matrix_times_vector', 'csr_to_dense_matrix',
 | |
|     'cumulative_sum', 'determinant', 'diag_matrix', 'diag_post_multiply',
 | |
|     'diag_pre_multiply', 'diagonal', 'digamma', 'dims', 'dirichlet_lpdf',
 | |
|     'dirichlet_rng', 'distance', 'dot_product', 'dot_self',
 | |
|     'double_exponential_cdf', 'double_exponential_lccdf', 'double_exponential_lcdf',
 | |
|     'double_exponential_lpdf', 'double_exponential_rng', 'e', 'eigenvalues_sym',
 | |
|     'eigenvectors_sym', 'erf', 'erfc', 'exp', 'exp2', 'exp_mod_normal_cdf',
 | |
|     'exp_mod_normal_lccdf', 'exp_mod_normal_lcdf', 'exp_mod_normal_lpdf',
 | |
|     'exp_mod_normal_rng', 'expm1', 'exponential_cdf', 'exponential_lccdf',
 | |
|     'exponential_lcdf', 'exponential_lpdf', 'exponential_rng', 'fabs',
 | |
|     'falling_factorial', 'fdim', 'floor', 'fma', 'fmax', 'fmin', 'fmod',
 | |
|     'frechet_cdf', 'frechet_lccdf', 'frechet_lcdf', 'frechet_lpdf', 'frechet_rng',
 | |
|     'gamma_cdf', 'gamma_lccdf', 'gamma_lcdf', 'gamma_lpdf', 'gamma_p', 'gamma_q',
 | |
|     'gamma_rng', 'gaussian_dlm_obs_lpdf', 'get_lp', 'gumbel_cdf', 'gumbel_lccdf',
 | |
|     'gumbel_lcdf', 'gumbel_lpdf', 'gumbel_rng', 'head', 'hypergeometric_lpmf',
 | |
|     'hypergeometric_rng', 'hypot', 'inc_beta', 'int_step', 'integrate_ode',
 | |
|     'integrate_ode_bdf', 'integrate_ode_rk45', 'inv', 'inv_Phi',
 | |
|     'inv_chi_square_cdf', 'inv_chi_square_lccdf', 'inv_chi_square_lcdf',
 | |
|     'inv_chi_square_lpdf', 'inv_chi_square_rng', 'inv_cloglog', 'inv_gamma_cdf',
 | |
|     'inv_gamma_lccdf', 'inv_gamma_lcdf', 'inv_gamma_lpdf', 'inv_gamma_rng',
 | |
|     'inv_logit', 'inv_sqrt', 'inv_square', 'inv_wishart_lpdf', 'inv_wishart_rng',
 | |
|     'inverse', 'inverse_spd', 'is_inf', 'is_nan', 'lbeta', 'lchoose', 'lgamma',
 | |
|     'lkj_corr_cholesky_lpdf', 'lkj_corr_cholesky_rng', 'lkj_corr_lpdf',
 | |
|     'lkj_corr_rng', 'lmgamma', 'lmultiply', 'log', 'log10', 'log1m', 'log1m_exp',
 | |
|     'log1m_inv_logit', 'log1p', 'log1p_exp', 'log2', 'log_determinant',
 | |
|     'log_diff_exp', 'log_falling_factorial', 'log_inv_logit', 'log_mix',
 | |
|     'log_rising_factorial', 'log_softmax', 'log_sum_exp', 'logistic_cdf',
 | |
|     'logistic_lccdf', 'logistic_lcdf', 'logistic_lpdf', 'logistic_rng', 'logit',
 | |
|     'lognormal_cdf', 'lognormal_lccdf', 'lognormal_lcdf', 'lognormal_lpdf',
 | |
|     'lognormal_rng', 'machine_precision', 'matrix_exp', 'max', 'mdivide_left_spd',
 | |
|     'mdivide_left_tri_low', 'mdivide_right_spd', 'mdivide_right_tri_low', 'mean',
 | |
|     'min', 'modified_bessel_first_kind', 'modified_bessel_second_kind',
 | |
|     'multi_gp_cholesky_lpdf', 'multi_gp_lpdf', 'multi_normal_cholesky_lpdf',
 | |
|     'multi_normal_cholesky_rng', 'multi_normal_lpdf', 'multi_normal_prec_lpdf',
 | |
|     'multi_normal_rng', 'multi_student_t_lpdf', 'multi_student_t_rng',
 | |
|     'multinomial_lpmf', 'multinomial_rng', 'multiply_log',
 | |
|     'multiply_lower_tri_self_transpose', 'neg_binomial_2_cdf',
 | |
|     'neg_binomial_2_lccdf', 'neg_binomial_2_lcdf', 'neg_binomial_2_log_lpmf',
 | |
|     'neg_binomial_2_log_rng', 'neg_binomial_2_lpmf', 'neg_binomial_2_rng',
 | |
|     'neg_binomial_cdf', 'neg_binomial_lccdf', 'neg_binomial_lcdf',
 | |
|     'neg_binomial_lpmf', 'neg_binomial_rng', 'negative_infinity', 'normal_cdf',
 | |
|     'normal_lccdf', 'normal_lcdf', 'normal_lpdf', 'normal_rng', 'not_a_number',
 | |
|     'num_elements', 'ordered_logistic_lpmf', 'ordered_logistic_rng', 'owens_t',
 | |
|     'pareto_cdf', 'pareto_lccdf', 'pareto_lcdf', 'pareto_lpdf', 'pareto_rng',
 | |
|     'pareto_type_2_cdf', 'pareto_type_2_lccdf', 'pareto_type_2_lcdf',
 | |
|     'pareto_type_2_lpdf', 'pareto_type_2_rng', 'pi', 'poisson_cdf', 'poisson_lccdf',
 | |
|     'poisson_lcdf', 'poisson_log_lpmf', 'poisson_log_rng', 'poisson_lpmf',
 | |
|     'poisson_rng', 'positive_infinity', 'pow', 'print', 'prod', 'qr_Q', 'qr_R',
 | |
|     'quad_form', 'quad_form_diag', 'quad_form_sym', 'rank', 'rayleigh_cdf',
 | |
|     'rayleigh_lccdf', 'rayleigh_lcdf', 'rayleigh_lpdf', 'rayleigh_rng', 'reject',
 | |
|     'rep_array', 'rep_matrix', 'rep_row_vector', 'rep_vector', 'rising_factorial',
 | |
|     'round', 'row', 'rows', 'rows_dot_product', 'rows_dot_self',
 | |
|     'scaled_inv_chi_square_cdf', 'scaled_inv_chi_square_lccdf',
 | |
|     'scaled_inv_chi_square_lcdf', 'scaled_inv_chi_square_lpdf',
 | |
|     'scaled_inv_chi_square_rng', 'sd', 'segment', 'sin', 'singular_values', 'sinh',
 | |
|     'size', 'skew_normal_cdf', 'skew_normal_lccdf', 'skew_normal_lcdf',
 | |
|     'skew_normal_lpdf', 'skew_normal_rng', 'softmax', 'sort_asc', 'sort_desc',
 | |
|     'sort_indices_asc', 'sort_indices_desc', 'sqrt', 'sqrt2', 'square',
 | |
|     'squared_distance', 'step', 'student_t_cdf', 'student_t_lccdf',
 | |
|     'student_t_lcdf', 'student_t_lpdf', 'student_t_rng', 'sub_col', 'sub_row',
 | |
|     'sum', 'tail', 'tan', 'tanh', 'target', 'tcrossprod', 'tgamma', 'to_array_1d',
 | |
|     'to_array_2d', 'to_matrix', 'to_row_vector', 'to_vector', 'trace',
 | |
|     'trace_gen_quad_form', 'trace_quad_form', 'trigamma', 'trunc', 'uniform_cdf',
 | |
|     'uniform_lccdf', 'uniform_lcdf', 'uniform_lpdf', 'uniform_rng', 'variance',
 | |
|     'von_mises_lpdf', 'von_mises_rng', 'weibull_cdf', 'weibull_lccdf',
 | |
|     'weibull_lcdf', 'weibull_lpdf', 'weibull_rng', 'wiener_lpdf', 'wishart_lpdf',
 | |
|     'wishart_rng'
 | |
|   ];
 | |
|   var DISTRIBUTIONS = [
 | |
|     'bernoulli', 'bernoulli_logit', 'beta', 'beta_binomial', 'binomial',
 | |
|     'binomial_logit', 'categorical', 'categorical_logit', 'cauchy', 'chi_square',
 | |
|     'dirichlet', 'double_exponential', 'exp_mod_normal', 'exponential', 'frechet',
 | |
|     'gamma', 'gaussian_dlm_obs', 'gumbel', 'hypergeometric', 'inv_chi_square',
 | |
|     'inv_gamma', 'inv_wishart', 'lkj_corr', 'lkj_corr_cholesky', 'logistic',
 | |
|     'lognormal', 'multi_gp', 'multi_gp_cholesky', 'multi_normal',
 | |
|     'multi_normal_cholesky', 'multi_normal_prec', 'multi_student_t', 'multinomial',
 | |
|     'neg_binomial', 'neg_binomial_2', 'neg_binomial_2_log', 'normal',
 | |
|     'ordered_logistic', 'pareto', 'pareto_type_2', 'poisson', 'poisson_log',
 | |
|     'rayleigh', 'scaled_inv_chi_square', 'skew_normal', 'student_t', 'uniform',
 | |
|     'von_mises', 'weibull', 'wiener', 'wishart'
 | |
|   ];
 | |
| 
 | |
|   return {
 | |
|     name: 'Stan',
 | |
|     aliases: ['stanfuncs'],
 | |
|     keywords: {
 | |
|       $pattern: hljs.IDENT_RE,
 | |
|       title: BLOCKS.join(' '),
 | |
|       keyword: STATEMENTS.concat(VAR_TYPES).concat(SPECIAL_FUNCTIONS).join(' '),
 | |
|       built_in: FUNCTIONS.join(' ')
 | |
|     },
 | |
|     contains: [
 | |
|       hljs.C_LINE_COMMENT_MODE,
 | |
|       hljs.COMMENT(
 | |
|         /#/,
 | |
|         /$/,
 | |
|         {
 | |
|           relevance: 0,
 | |
|           keywords: {
 | |
|             'meta-keyword': 'include'
 | |
|           }
 | |
|         }
 | |
|       ),
 | |
|       hljs.COMMENT(
 | |
|         /\/\*/,
 | |
|         /\*\//,
 | |
|         {
 | |
|           relevance: 0,
 | |
|           // highlight doc strings mentioned in Stan reference
 | |
|           contains: [
 | |
|             {
 | |
|               className: 'doctag',
 | |
|               begin: /@(return|param)/
 | |
|             }
 | |
|           ]
 | |
|         }
 | |
|       ),
 | |
|       {
 | |
|         // hack: in range constraints, lower must follow "<"
 | |
|         begin: /<\s*lower\s*=/,
 | |
|         keywords: 'lower'
 | |
|       },
 | |
|       {
 | |
|         // hack: in range constraints, upper must follow either , or <
 | |
|         // <lower = ..., upper = ...> or <upper = ...>
 | |
|         begin: /[<,]\s*upper\s*=/,
 | |
|         keywords: 'upper'
 | |
|       },
 | |
|       {
 | |
|         className: 'keyword',
 | |
|         begin: /\btarget\s*\+=/,
 | |
|         relevance: 10
 | |
|       },
 | |
|       {
 | |
|         begin: '~\\s*(' + hljs.IDENT_RE + ')\\s*\\(',
 | |
|         keywords: DISTRIBUTIONS.join(' ')
 | |
|       },
 | |
|       {
 | |
|         className: 'number',
 | |
|         variants: [
 | |
|           {
 | |
|             begin: /\b\d+(?:\.\d*)?(?:[eE][+-]?\d+)?/
 | |
|           },
 | |
|           {
 | |
|             begin: /\.\d+(?:[eE][+-]?\d+)?\b/
 | |
|           }
 | |
|         ],
 | |
|         relevance: 0
 | |
|       },
 | |
|       {
 | |
|         className: 'string',
 | |
|         begin: '"',
 | |
|         end: '"',
 | |
|         relevance: 0
 | |
|       }
 | |
|     ]
 | |
|   }
 | |
| }
 |